Абсолютная и относительная погрешность косвенных измерений. Теория ошибок. Расчёт погрешности косвенных измерений

В большинстве случаев конечной целью лабораторной работы является вычисление искомой величины с помощью некоторой формулы, в которую входят величины, измеряемые прямым путем. Такие измерения называются косвенными. В качестве примера приведем формулу плотности твердого тела цилиндрической формы

где r – плотность тела, m – масса тела, d – диаметр цилиндра, h – его высота.

Зависимость (П.5) в общем виде можно представить следующим образом:

где Y – косвенно измеряемая величина, в формуле (П.5) это плотность r; X 1 , X 2 ,... , X n – прямо измеряемые величины, в формуле (П.5) это m , d , и h .

Результат косвенного измерения не может быть точным, поскольку результаты прямых измерений величин X 1 , X 2 , ... , X n всегда содержат в себе погрешность. Поэтому при косвенных измерениях, как и при прямых, необходимо оценить доверительный интервал (абсолютную погрешность)полученного значения DY и относительную погрешность e.

При расчете погрешностей в случае косвенных измерений удобно придерживаться такой последовательности действий:

1) получить средние значения каждой прямо измеряемой величины áX 1 ñ, áX 2 ñ, …, áX n ñ;

2) получить среднее значение косвенно измеряемой величины áY ñ, подставив вформулу (П.6) средние значения прямо измеряемых величин;

3) провести оценки абсолютных погрешностей прямо измеряемых величин DX 1 , DX 2 , ..., DX n , воспользовавшись формулами (П.2) и (П.3);

4) основываясь на явном виде функции (П.6), получить формулу для расчета абсолютной погрешности косвенно измеряемой величины DY и рассчитать ее;

6) записать результат измерения с учетом погрешности.

Ниже без вывода приводится формула, позволяющая получить формулы для расчета абсолютной погрешности, если известен явный вид функции (П.6):

где ¶Y¤¶X 1 и т. д. – частные производные от Y по всем прямо измеряемым величинам X 1 , X 2 , …, X n (когда берется частная производная, например по X 1 , то все остальные величины X i в формуле считаются постоянными), DX i – абсолютные погрешности прямо измеряемых величин, вычисленные согласно (П.3).

Рассчитав DY, находят относительную погрешность .

Однако если функция (П.6) является одночленом, то намного легче сначала рассчитать относительную погрешность, а затем уже абсолютную.

Действительно, разделив обе части равенства (П.7) на Y , получим

Но так как , то можно записать

Теперь, зная относительную погрешность, определяют абсолютную .

В качестве примера получим формулу для расчета погрешности плотности вещества, определяемой по формуле (П.5). Поскольку (П.5) является одночленом, то, как сказано выше, проще сначала рассчитать относительную погрешность измерения по (П.8). В (П.8) под корнем имеем сумму квадратов частных производных от логарифма измеряемой величины, поэтому сначала найдем натуральный логарифм r:


ln r = ln 4 + ln m – ln p –2 ln d – ln h ,

а потом уже воспользуемся формулой (П.8) и получим, что

Как видно, в (П.9) используются средние значения прямо измеряемых величин и их абсолютные погрешности, рассчитанные методом прямых измерений по (П.3). Погрешность, вносимую числом p, не учитывают, поскольку ее значение всегда можно взять с точностью, превышающей точность измерения всех других величин. Рассчитав e, находим .

Если косвенные измерения являются независимыми (условия каждого последующего эксперимента отличаются от условий предыдущего), то значения величины Y вычисляются для каждого отдельного эксперимента. Произведя n опытов, получают n значений Y i . Далее, принимая каждое из значений Y i (где i – номер опыта) за результат прямого измерения, вычисляют áY ñ и DY по формулам (П.1) и (П.2) соответственно.

Окончательный результат как прямых, так и косвенных измерений должен выглядеть так:

где m – показатель степени, u – единицы измерения величины Y .

Задача ставится так: пусть искомая величина z определяется через другие величины a, b, c , ..., полученные при прямых измерениях

z = f (a, b, c,...) (1.11)

Необходимо найти среднее значение функции и погрешность ее измерений, т.е. найти доверительный интервал

при надежности a и относительную погрешность .

Что касается , то оно находится путем подстановки в правую часть (11) вместо a, b, c ,... их средних значений

Абсолютная погрешность косвенных измерений является функцией абсолютных погрешностей прямых измерений и вычисляется по формуле

(1.14)

Здесь частные производные функции f по переменным a, b,

Если величины a, b, c, ... в функцию Z = f (a, b, c,...) входят в виде сомножителей в той или иной степени, т. е. если

, (1.15)

то сначала удобно вычислить относительную погрешность

, (1.16)

а затем абсолютную

Формулы для Dz и e z приводятся в справочной литературе.

Примечания.

1. При косвенных измерениях в расчетные формулы могут входить известные физические константы (ускорение свободного падения g , скорость света в вакууме с и т. д.), числа типа дробные множители ... . Эти величины при вычислениях округляются. При этом, естественно, в расчет вносится погрешность ‒ погрешность округления при вычислениях, которая должна учитываться.

Принято считать, что погрешность округления приближенного числа равна половине единицы того разряда, до которого это число было округлено. Например,p = 3,14159... . Если взять p= 3,1, то Dp = 0,05, если p = 3,14, то Dp = 0,005 ... и т.д. Вопрос о том, до какого разряда округлять приближенное число, решается так: относительная ошибка, вносимая округлением, должна быть того же порядка или на порядок меньше, что и максимальная из относительных ошибок других видов. Таким же образом оценивается абсолютная ошибка табличных данных. Например, в таблице указано r = 13,6×10 3 кг/ м 3 , следовательно,Dr = 0,05×10 3 кг/м 3 .

Ошибка значений универсальных постоянных часто указывается вместе с их принятыми за средние значения: (с = м/c, где Dс = 0,3×10 3 м/c.

2. Иногда при косвенных измерениях условия опыта при повторных наблюдениях не совпадают. В этом случае значение функции z вычисляется для каждого отдельного измерения, а доверительный интервал вычисляется через значения z так же, как при прямых измерениях (все погрешности здесь входят в одну случайную погрешность измерения z ). Величины, которые не измеряются, а задаются (если они есть) должны быть указаны при этом с достаточно большой точностью.

Порядок обработки результатов измерений

Прямые измерения

1. Вычислить среднее значение для n измерений

2. Найти погрешности отдельных измерений .

3. Вычислить квадраты погрешностей отдельных измерений и их сумму: .

4. Задать надежностьa (для наших целей принимаем a = 0,95) и по таблице определить коэффициенты Стьюдента t a,n и t a, ¥ .

5. Произвести оценку систематических погрешностей: приборной Dх пр и ошибки округления при измеренияхDх окр = D/2 (D ‒ цена деления прибора) и найти полную погрешность результата измерений (полуширину доверительного интервала):

.

6. Оценить относительную погрешность

.

7. Окончательный результат записать в виде

ε = … % при a = ...

Косвенные измерения

1. Для каждой величины, измеренной прямым способом, входящей в формулу для определения искомой величины , провести обработку, как указано выше. Если среди величин a, b, c , ... есть табличные константы или числа типа p, е ,..., то при вычислениях округлять их следует так (если это возможно), чтобы вносимая при этом относительная ошибка была на порядок меньше наибольшей относительной ошибки величин, измеренных прямым способом.

Определить среднее значение искомой величины

z = f (,,,...).

3. Оценить полуширину доверительного интервала для результата косвенных измерений

,

где производные ... вычисляются при

4. Определить относительную погрешность результата

5. Если зависимость z от a, b, c ,... имеет вид , где k, l, m ‒ любые действительные числа, то сначала следует найти относительную ошибку

а затем абсолютную .

6. Окончательный результат записать в виде

z = ± Dz , ε = …% при a= … .

Примечание:

При обработке результатов прямых измерений нужно следовать следующему правилу: численные значения всех рассчитываемых величин должны содержать на один разряд больше, чем исходные (определенные экспериментально) величины.

При косвенных измерениях вычисления производить по правилам приближенных вычислений :

Правило 1. При сложении и вычитании приближенных чисел необходимо:

а) выделить слагаемое, у которого сомнительная цифра имеет наиболее высокий разряд;

б) все остальные слагаемые округлить до следующего разряда (сохраняется одна запасная цифра);

в) произвести сложение (вычитание);

г) в результате отбросить последнюю цифру путем округления (разряд сомнительной цифры результата при этом совпадает со старшим из разрядов сомнительных цифр слагаемых).

Пример: 5,4382·10 5 – 2,918·10 3 + 35,8 + 0,064.

В этих числах последние значащие цифры сомнительные (неверные уже отброшены). Запишем их в виде 543820 – 2918 + 35,8 + 0,064.

Видно, что у первого слагаемого сомнительная цифра 2 имеет наиболее высокий разряд (десятки). Округлив все другие числа до следующего разряда и сложив, получим

543820 – 2918 + 36 + 0 = 540940 = 5,4094·10 5 .

Правило 2. При умножении (делении) приближенных чисел необходимо:

а) выделить число (числа) с наименьшим количеством значащих цифр (ЗНАЧАЩИЕ – цифры отличные от ноля и ноли стоящие между ними );

б) округлить остальные числа так, чтобы в них было на одну значащую цифру больше (сохраняется одна запасная цифра), чем выделенном по п. а;

в) перемножить (разделить) полученные числа;

г) в результате оставить столько значащих цифр, сколько их было в числе (числах) с наименьшим количеством значащих цифр.

Пример: .

Правило 3. При возведении в степень, при извлечении корня в результате сохраняется столько значащих цифр, сколько их в исходном числе.

Пример: .

Правило 4. При нахождении логарифма числа мантисса логарифма должна иметь столько значащих цифр, сколько их в исходном числе:

Пример: .

В окончательной записиабсолютной погрешности следует оставлять только одну значащую цифру . (Если этой цифрой окажется 1, то после нее сохраняют еще одну цифру).

Среднее значение округляется до того же разряда, что и абсолютная погрешность.

Например: V = (375,21 0,03) см 3 = (3,7521 0,0003) см 3 .

I = (5,530 0,013) А, A = Дж.

Формулы вычисления погрешностей косвенных измерений основаны на представлениях дифференциального исчисления.

Пусть зависимость величины Y от измеряемой величины Z имеет простой вид: .

Здесь и - постоянные, значения которых известны. Если z увеличить или уменьшить на некоторое число , то соответственно изменится на :

Если - погрешность измеренной величины Z , то соответственно будет погрешностью вычисляемой величины Y .

Получим формулу абсолютной погрешности в общем случае функции одной переменной . Пусть график этой функции имеет вид, показанный на рис.1. Точному значению аргумента z 0 соответствует точное значение функцииy 0 = f(z 0).

Измеренное значение аргумента отличается от точного значения аргумента на величину Δz вследствие ошибок измерений. Значение функции будет отличаться от точного на величину Δy.

Из геометрического смысла производной как тангенса угла наклона касательной к кривой в данной точке (рис. 1) следует:

. (10)

Формула для относительной погрешности косвенного измерения в случае функции одной переменной будет иметь вид:
. (11)

Учитывая, что дифференциал функции равен , получим

(12)

Если косвенное измерение представляет собой функцию m переменных , то погрешность косвенного измерения будет зависеть от погрешностей прямых измерений . Частную погрешность, связанную с ошибкой измерения аргумента , обозначим . Она составляет приращение функции за счет приращения при условии, что все остальные аргументы неизменны. Таким образом, частную абсолютную погрешность запишем согласно (10) в следующем виде:

(13)

Таким образом, чтобы найти частную погрешность косвенного измерения , надо, согласно (13), частную производную умножить на погрешность прямого измерения . При вычислении частной производной функции по остальные аргументы считаются постоянными.

Результирующая абсолютная погрешность косвенного измерения определяется по формуле, в которую входят квадраты частных погрешностей

косвенного измерения :



или с учетом (13)

(14)

Относительная погрешность косвенного измерения определяется по формуле:

Или с учетом (11) и (12)

. (15)

Пользуясь (14) и (15), находят одну из погрешностей, абсолютную или относительную, в зависимости от удобства вычислений. Так, например, если рабочая формула имеет вид произведения, отношения измеряемых величин, ее легко логарифмировать и по формуле (15) определить относительную погрешность косвенного измерения. Затем абсолютную погрешность вычислить по формуле (16):

Для иллюстрации вышеизложенного порядка определения погрешности косвенных измерений вернемся к виртуальной лабораторной работе «Определение ускорения свободного падения при помощи математического маятника».

Рабочая формула (1) имеет вид отношения измеряемых величин:

Поэтому начнем с определения относительной погрешности. Для этого прологарифмируем данное выражение, а затем вычислим частные производные:

; ; .

Подстановка в формулу (15) приводит к формуле относительной погрешности косвенного измерения:

(17)

После подстановка результатов прямых измерений

{ ; } в (17) получаем:

(18)

Для вычисления абсолютной погрешности используем выражение (16) и ранее вычисленное значение (9) ускорения свободного падения g :

Результат вычисления абсолютной погрешности округляем до одной значащей цифры. Вычисленное значение абсолютной погрешности определяет точность записи окончательного результата:

, α ≈ 1. (19)

При этом доверительная вероятность определяется доверительной вероятностью тех из прямых измерений, которые внесли решающий вклад в погрешность косвенного измерения. В данном случае это измерения периода.

Таким образом, с вероятностью близкой к 1 величина g лежит в пределах от 8 до 12 .

Для получения более точного значения ускорения свободного падения g необходимо совершенствовать методику измерений. С этой целью надо уменьшить относительную погрешность , которая в основном, как следует из формулы (18), определяется погрешностью измерения времени.

Для этого надо измерять время не одного полного колебания, а, например, 10-ти полных колебаний. Тогда, как следует из (2), формула относительной погрешности примет вид:

. (20)

В табл.4 представлены результаты измерения времени для N = 10

Для величины L возьмем результаты измерений из табл.2. Подставляя результаты прямых измерений в формулу (20), найдем относительную погрешность косвенного измерения:

По формуле (2) вычислим значение косвенно измеряемой величины:

.

.

Окончательный результат записывается в виде:

; ; .

В этом примере показана роль формулы относительной погрешности в анализе возможных направлений совершенствования методики измерений.

Расчет погрешностей при прямых и косвенных измерениях

Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения . Измерения выполняются опытным путем с помощью специальных технических средств.

Прямыми измерениями называются измерения, результат которых получается непосредственно из опытных данных (например, измерение длины линейкой, времени – секундомером, температуры – термометром). Косвенными измерениями называются измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, значения которых получают в процессе прямых измерений (например, определение скорости по пройденному пути и времени https://pandia.ru/text/78/464/images/image002_23.png" width="65" height="21 src=">).

Всякое измерение, как бы оно тщательно не было выполнено, обязательно сопровождается погрешностью (ошибкой) – отклонением результата измерений от истинного значения измеряемой величины.

Систематические погрешности – это погрешности, величина которых одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов, в одних и тех же условиях. Систематические погрешности происходят:

В результате несовершенства приборов, используемых при измерениях (например, стрелка амперметра может быть отклонена от нулевого деления в отсутствие тока; у коромысла весов могут быть неравные плечи и др.);

В результате недостаточно полной разработки теории метода измерений, т. е. метод измерений содержит в себе источник ошибок (например, возникает ошибка, когда в калориметрических работах не учитывается потеря тепла в окружающую среду или когда взвешивание на аналитических весах производится без учета выталкивающей силы воздуха);

В результате того, что не учитывается изменение условий опыта (например, при долговременном прохождении тока по цепи в результате теплового действия тока меняются электрические параметры цепи).

Систематические погрешности можно исключить, если изучить особенности приборов, полнее разработать теорию опыта и на основе этого вносить поправки в результаты измерений.

Случайные погрешности – это погрешности, величина которых различна даже для измерений, выполненных одинаковым образом. Причины их кроются как в несовершенстве наших органов чувств, так и во многих других обстоятельствах, сопровождающих измерения, и которые нельзя учесть заранее (случайные ошибки возникают, например, если равенство освещенностей полей фотометра устанавливается на глаз; если момент максимального отклонения математического маятника определяется на глаз; при нахождении момента звукового резонанса на слух; при взвешивании на аналитических весах, если колебания пола и стен передаются весам и т. д.).

Случайных погрешностей избежать нельзя. Их возникновение проявляется в том, что при повторении измерений одной и той же величины с одинаковой тщательностью получаются числовые результаты, отличающиеся друг от друга. Поэтому, если при повторении измерений получались одинаковые значения, то это указывает не на отсутствие случайных погрешностей, а на недостаточную чувствительность метода измерений.

Случайные погрешности изменяют результат как в одну, так и в другую сторону от истинного значения, поэтому, чтобы уменьшить влияние случайных ошибок на результат измерений, обычно многократно повторяют измерения и берут среднее арифметическое всех результатов измерений.

Заведомо неверные результаты - промахи возникают вследствие нарушения основных условий измерения, в результате невнимательности или небрежности экспериментатора. Например, при плохом освещении вместо “3” записывают “8”; из-за того, что экспериментатора отвлекают, он может сбиться при подсчете количества колебаний маятника; из-за небрежности или невнимательности он может перепутать массы грузов при определении жесткости пружины и т. д. Внешним признаком промаха является резкое отличие результата по величине от результатов остальных измерений. При обнаружении промаха результат измерения следует сразу отбросить, а само измерение повторить. Выявлению промахов способствует также сравнение результатов измерений, полученных разными экспериментаторами.

Измерить физическую величину это значит найти доверительный интервал , в котором лежит ее истинное значение https://pandia.ru/text/78/464/images/image005_14.png" width="16 height=21" height="21">..png" width="21" height="17 src=">.png" width="31" height="21 src="> случаев истинное значение измеряемой величины попадет в доверительный интервал. Величина выражается или в долях единицы, или в процентах. При большинстве измерений ограничиваются доверительной вероятностью 0,9 или 0,95. Иногда, когда требуется чрезвычайно высокая степень надежности, задают доверительную вероятность 0,999. Наряду с доверительной вероятностью часто пользуются уровнем значимости , который задает вероятность того, истинное значение не попадает в доверительный интервал. Результат измерения представляют в виде

где https://pandia.ru/text/78/464/images/image012_8.png" width="23" height="19"> – абсолютная погрешность. Таким образом, границы интервала , https://pandia.ru/text/78/464/images/image005_14.png" width="16" height="21"> лежит в пределах этого интервала.

Для того чтобы найти и , выполняют серию однократных измерений. Рассмотрим конкретный пример..png" width="71" height="23 src=">; ; https://pandia.ru/text/78/464/images/image019_5.png" width="72" height="23">.png" width="72" height="24">. Значения могут и повторяться, как значения и https://pandia.ru/text/78/464/images/image024_4.png" width="48 height=15" height="15">.png" width="52" height="21">. Соответственно уровень значимости .

Среднее значение измеряемой величины

Измерительный прибор также вносит свой вклад в погрешность измерений. Эта погрешность обусловлена конструкцией прибора (трением в оси стрелочного прибора, округлением, производимым цифровым или дискретным стрелочным прибором и пр.). По своей природе это систематическая ошибка, но ни величина, ни знак ее для данного конкретного прибора неизвестны. Приборную погрешность оценивают в процессе испытаний большой серии однотипных приборов.

Нормированный ряд классов точности измерительных приборов включает такие значения: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности прибора равен выраженной в процентах относительной ошибке прибора по отношению к полному диапазону шкалы. Паспортная погрешность прибора

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Вы сейчас здесь: Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.