Типы тканей в организме человека. Нервная ткань. Нервная ткань состоит из нервных клеток с их отростками и окончаниями этих отростков Ткань - расположение в организме, виды, функции, строение

Выписка из рабочей программы по теме «Клетка. Ткани»

Теория

Практика

2 часа

2 часа

2 часа

Клетка. Ткани.

Строение и функции клетки.

Понятие о ткани. Виды тканей.

Представления

    клетка как структурная единица, обладающая свойствами живого

    гистологические особенности различных видов тканей

Знания

    строение клетки, ее структур, функции ядра, клеточной мембраны, цитоплазмы, органелл

    жизненный цикл клетки, виды деления клеток

    свойства клетки как элементарной единицы живого

    ткань – определение, классификация

    особенности строения и топографии эпителиальной, соединительной, мышечной и нервной тканей, их виды

    функциональное значение различных видов тканей

Умения

    уметь различать под микроскопом клетки и межклеточное вещество

    уметь различать различные виды эпителиальной, соединительной, мышечной ткани

    уметь различать в клетке ее структуры с указанием особенностей их строения и функции

    уметь давать краткую морфологическую и функциональную характеристику тканей

Тема лекции : «Клетка.Ткани»

Клетка является наименьшей структурной, обладающей всеми признаками живого.

Живое характеризует ряд свойств:

Способность к самовоспроизведению;

Изменчивость;

Обмен веществ;

Раздражимость;

Адаптация.

Совокупность этих свойств впервые обнаруживается на уровне клетки.

Клетка - это ограниченная активной мембраной, упорядоченная структурная система биополимеров. Она является микроскопическим образованием, различным по величине и форме.

Клетки были открыты и описаны более 300 лет назад. Роберт Гук наблюдал растительные клетки с помощью увеличительных линз. Наибольшего развития цитология (наука о клетке) получила после того, как Т.Шванн(1838)сформулировал клеточную теорию, объединив все существовавшие результаты исследований. В настоящее время клеточная теория базируется на основных положениях:

    клетка- наименьшая единица живого;

    клетки разных организмов сходны по своему строению и функции (гомологичны);

    размножение клеток происходит путем деления исходной клетки.

    клетки являются частью многоклеточного организма, где они объединены в ткани и органы и связаны межклеточными, гуморальными и нервными формами регуляции.

Согласно второму принципу теории клетки различных организмов, несмотря на многообразие, имеет общие принципы строения. Каждая клетка состоит из плазмолеммы(мембраны), цитоплазмы и большинство клеток – ядра.

Рассмотрим характеристики компонентов клетки.

    Плазмолемма является мембранной структурой (тонкий пласт, состоящий из двойного слоя липидов, соединенных с белками) и выполняет барьерно – транспортную и рецепторную функции. Она отделяет цитоплазму клетки от внешней среды. Транспортная функция плазмолеммы осуществляется различными механизмами. Существует пассивный перенос молекул путем диффузии(ионы), осмоса (молекулы воды), активный перенос – с затратой энергии АТФ и с помощью ферментов – пермеаз(перенос АК, натрия, сахаров). Перенос более крупных молекул называется эндоцитозом. Основными разновидностями его являются фагоцитоз – перенос твердых частиц и пиноцитоз – перенос в жидких средах. Захваченные клеткой частицы погружаются, окруженные участком цитоплазмы (фагосомы и пиносомы) и сливаются с лизосомами, которые подвергают их расщеплению. Рецепторная функция плазмолеммы заключается в «узнавании» клеткой различных химических (гормоны, белки) и физических(свет, звук) факторов с помощью рецепторов, расположенных в плазмолемме (полисахариды, гликопротеиды).

Плазмолемма может образовывать яд специальных образований – микроворсинки, щеточную каемка, реснички и жгутики, а также разнообразные межклеточные контакты.

Микроворсинки – выросты цитоплазмы, ограниченные плазмолеммой (много в эпителиальных клетках кишечника, почек); увеличивают площадь клеточной поверхности.

Реснички и жгутики – выросты цитоплазмы, происхождение которых связано с центриолями, служат аппаратом движения клеток.

Межклеточные контакты – структуры плазмалеммы, обеспечивающие соединение и взаимодействие клеток (передачу ионов, молекул).

    Цитоплазма состоит гиалоплазмы и расположенных в ней органелл и включений.

Гиалоплазма – внутренняя среда клетки, бесструктурное, полупрозрачное, полужидкое образование, способное менять свое ф.-х. состояние. В ее состав входит белки и ферменты, трансп. РНК, аминокислоты, полисахариды, АТФ, различные ионы. Основная функция – обеспечение химического взаимодействия расположенных в ней структур.

Органеллы делятся на мембранные и немембранные.

К мембранным относятся: эндоплазматическая сеть

митохондрии

апп. Гольджи

лизосомы

К немембранным относятся: рибосомы

полисомы

микротрубочки

центриоли

ЭПС – система трубочек, цистерн, вакуолей, ограниченных одной мембраной. Различают гранулярную и агранулярную ЭПС. Для гранулярной характерно наличие гранул – рибосом.

Основная функция ЭПС осуществляется в синтезе веществ и транспортировке их в различные части клетки и во внешнюю среду. В агранулярной ЭПС осуществляется синтез липидов и углеводов, а в гранулярной – белков.

Митохондрии – структуры округлой или палочковидной формы, образованные двумя мембранами (наружной и внутренней, которая образует выросты внутрь – кристы, погруженные в матрикс, в котором располагаются рибосомы, гранулы). На кристах происходит образование АТФ. Основная функция митохондрий – обеспечение клеточного дыхания и обработка АТФ, энергия которых используется для движения клеток, мышечного сокращения, процессов синтеза и секреции веществ, прохождения веществ через мембраны.

Комплекс Гольджи – множественные и единичные диктиосомы (мембранные структуры, состоящие из цистерн с расширениями, мелких транспортных везикул, крупных секреторных везикул и гранул). Комплекс Гольджи участвует в процессе секреции(белки, синтезируемые в рибосомах ЭПС, поступают в комплекс Гольджи), синтезирует полисахариды, образует лизосомы.

Лизосомы – это мелкие пузырьки размером 0.2 – 0.4 мкм, ограниченные одинарной мембраной и содержащие более 40 разнообразных ферментов, расщепляющих белки, нуклеиновые кислоты, липиды, углеводы. Функция лизосом заключается в переваривание различных веществ, поступающих извне и уничтожение стареющих или дефектных структур в самой клетке.

Немембранные органеллы:

Рибосомы – органеллы синтеза белка образуется в ядрышке. Они состоят из двух субъединиц – малой и большой, каждая из которых построена из скрученного тяжа рибонуклеопротеида, где представлены поровну белки и рибосомная РНК. Для молодых клеток характерно наличие свободных рибосом, обеспечивающих синтез белков для самой клетки (рост). В дифференцированных клетках увеличивается число рибосом и полисом, связанных с ЭПС и обеспечивающих синтез белков «на экспорт» (секрет клетки)

Микротрубочки – полые цилиндры диметром 24 нм, состоящие из белка тубулина. Они могут постоянно образовываться в гиалоплазме, участвуя в формировании цитоскелета клетки. Входят в состав центреолей, ресничек, жгутиков, веретена деления.

Центриоли – лежат в паре, каждая состоит из микротрубочек. Располагаются перпендикулярно относительно друг друга и окружены радиально отходящими микротрубочками(центросфера)

Микрофиламенты и микрофибрилы – выполняет опорно-каркасную и сократительную функции в клетке, что обеспечивает движение клетки и перемещение в гиалоплазме органелл и включений.

    Ядро выполняет в клетке важнейшие функции – хранение и передача генетической информации и обеспечение синтеза белка(образование всех видов РНК – инф., траснсп., рибосомн., синтез рибосомных белков). Структура и функции белка изменяются в течение клеточного цикла – времени существовании от деления до деления или от деления до смерти.

Ядро интерфазной клетки (неделящейся) состоит из ядерной оболочки, хроматина, ядрышка и кариоплазмы (нуклеоплазмы)

Ядерная оболочка состоит из двух мембран – наружной и внутренней. В оболочке имеются поры(комплексы), которые обеспечивают прохождение макромолекул из ядра в цитоплазму. Одной из функций ядерной оболочки является фиксация хромосом и обеспечение их пространственного положения.

Хромосомы постоянно присутствуют в ядре и хорошо видны только во время митоза. В интерфазном ядре хромосомы дисперализованы и не видны. Состоит из ДНК, белка, РНК.

ядрышко – тельце округлой формы, в котором происходит образование рибосом. Число ядрышек в разных клетках варьирует. Увеличение числа и размеров ядрышек свидетельствует о высокой интенсивности синтеза РНК и белков.

Жизненный цикл клетки

Клетка, являясь частью целостного многоклеточного организма, выполняет свойственно живому функции. К таковым относится воспроизводство.

Основной формой воспроизведения клеток является митоз (непрямое деление). Митоз состоит из 4 основных фаз: профазы, метафазы, анафазы, телофазы.

- профаза происходит конденсация хромосом, они становятся видимыми, каждая хромосома состоит из двух сестринских хромосом – хроматид, ядрышки уменьшаются и исчезают, оболочка ядра разрушается, уменьшается число рибосом, гран. ЭПС распадается на мелкие вакуоли, центриоли расходятся, и начинает формироваться веретено деления (микротрубочки, отходящие от центриолей);

- метафаза завершается формироваться веретено деления и хромосомы располагаются экваториальной плоскости клетки;

- анафаза половинки хромосом теряют связь в обл. центромер и расходятся к полюсам клетки, к полюсу отходит диплоидный набор хромосом(46 у человека);

- телофаза происходит восстановление структур интерфазного ядра – деспирализация хромосом, реконструкция оболочки ядра, появление ядрышек, разделение клеточного тела на две части.

Продолжительность митоза и его отдельных фаз варьирует в различных клетках от 30 мин. До 3 часов и более(интерфаза 10-30ч., профаза 30-60ч., метафаза 2-10мин., анафаза 2-3мин., телофаза 20-30мин.). Количество митозов в тканях и органах является показателем интенсивности их роста и регенерации (физиологической и реперативной) в норме и паталогии.

Разновидностью митоза является мейоза – деление созревающих половых клеток, которое приводит к уменьшению в 2 раза числа хромосом, т.е. формированию гаплоидного числа хромосом (23 у человека). Мейоз состоит из двух следующих друг за другом деления с короткой интерфазой – редукционное (число хромосом редуцируется) и эвационное(митоз).

Кроме способности к воспроизводству клетка обладает рядом свойств, характеризующих живое:

Обмен веществ из внешней среды (кровь, лимфа, тканевая жидкость) поступают через полупроницаемую мембрану вещества, идущие на построение клетки, окислительные процессы, через оболочку выводятся продукты жизнедеятельности клетки.

Проницаемость клетки зависит от различных факторов в т.ч. от

концентрации соле Поступление веществ возможно путем фагоцитоза

и пиноцитоза.

Секреция – выделяемые клетками вещества(гормоны,

ферменты, БАВ).

Раздражимость способность отвечать специфическими реакциями на

воздействия внешнего раздражителя. Мышечная,нервная, железистая клетки обладают высшей степенью раздражимости -

возбудимости. Как частный вид раздражимости является способность клеток к движению – лейкоциты, макрофаги, фибробласты, сперматозоиды.

Ткани. Виды, их морфологическая и функциональная характеристика.

В организме человека различают 4 вида тканей:

    эпителиальную;

    соединительную;

    мышечную;

Эпителий покрывает поверхности тела, слизистых и серозных оболочек внутренних органов и образует большинство желез.

Покровный эпителий выполняет:

    барьерную функцию

    обменную функцию

    защитную функцию

Железистый эпителий осуществляет секреторную функцию.

Общая характеристика покровного эпителия.

    Разнообразие морфологических форм;

    Нет межклеточного вещества;

    Клетки располагаются в виде пласта;

    Располагаются на базальной мембране;

    Отсутствуют кровеносные сосуды;

    Высокая регенерация.

Строение и функции покровного эпителия.

Морфологическая классификация эпителия:

    Однослойный эпителий-

Кубический

Призматический

Многорядный

    Многослойный эпителий

Неороговевающий

Ороговевающий

Переходный

Железистый эпителий.

Железы (gianduiae) выполняют секреторную функцию и являются производными железистого эпителия.

Многие железы – самостоятельные органы (поджелудочная, щитовидная железа), другие железы являются частью органа (железы желудка).

Все железы подразделяются на:

    Эндокринные, вырабатывающие свой секрет (гормоны) в кровь.

    Экзокринные вырабатывают секрет во внешнюю среду (на кожу и в полости органов).

По строению экзокринные железы разделены на простые и сложные с ветвящимися выводными протоками. По химическому составу секрета они делятся на белковые (серозные), слизистые, белково-слизистые.

Опорно-трофические ткани.

К этой группе относятся кровь и лимфа, а также соединительная ткань. Все они имеют сходное строение: содержат хорошо развитое межклеточное вещество. Все ткани этой группы выполняют трофическую функцию (кровь, лимфа) и опорную функцию (хрящевая, костная).

Кровь, лимфа, рыхлая соединительная ткань составляют внутреннюю среду организма.

Соединительная ткань.

К этой группе относятся:

    собственно соединительная ткань (рыхлая и плотная)

    со специальными свойствами (ретикулярная, жировая, слизистая, пигментная)

    скелетная соединительная ткань (хрящевая, костная ткань)

Соединительная ткань характеризуются разнообразием клеток и хорошо развитым межклеточным веществом, состоящим из волокон и основного аморфного вещества. В основу классификации положено соотношение клеток и межклеточного вещества, а также степень упорядочности расположения волокон.

Клетки ткани : фибробласты, макрофаги, плазмоциты, тучные клетки, адипоциты, пигментоциты, адвентициальные клетки, лейкоциты крови.

Межклеточное вещество : состоит из коллагеновых, ретикулярных, эластических волокон и основного вещества.

Рыхлая волокнистая соединительная ткань – сопровождает кровеносные и лимфатические сосуды, образует строму многих органов.

Плотная волокнистая соединительная ткань содержит большое количество плотно расположенных волокон и небольшое количество клеточных элементов. Эта ткань лежит в основе сухожилий, связок, фиброзных оболочек.

Хрящевая ткань состоит из клеток (хондроцитов) и большого количества межклеточного вещества.

Различают три вида хрящевой ткани:

    гиалиновую (скелет эмбриона, реберно-грудинное соединение, хрящи гортани, суставные поверхности)

    эластическую (в основе ушной раковины)

    волокнистую (межпозвоночные диски, полуподвижные сочленения)

Костная ткань специализированный тип соединительной ткани с высокой минерализацией межклеточного вещества, содержащего около 70% неорганических веществ (фосфатов кальция).

Существует два типа костной ткани – ретикулофиброзная и пластинчатая.

К клеткам костной ткани относятся: остеоциты, остеобласты, остеокласты.

Пластинчатая костная ткань наиболее распространенная костная ткань во взрослом организме. Она состоит из костных пластинок, образованных костными клетками и минерализованным основным веществом с колагеновами волокнами. В соседних пластинках волокна имеют разное направление, чем достигается большая прочность костной ткани. Из этой ткани построены компактное и губчатое вещество костей скелета.

Мышечная ткань.

Обеспечивает перемещение в пространстве организма в целом и его частей. Мышечная ткань обладает способностью к сокращению под действием нервных импульсов, что сопровождается изменением мембранных потенциалов. Сокращение происходит благодаря содержанию в мышечных клетках миофибрилл, вследствие взаимодействия белков актина и миозина с участием ионов Са.

Все мышечные ткани делятся на две подгруппы:

    гладкие мышечные ткани (нити актина и миозина миофибрилл не имеют поперечной исчерчености) присутствуют на стенках внутренних органов и обладают большей растяжимостью, меньшей возбудимостью, чем скелетная;

    поперечно полосатые ткани (актиновые и миозиновые миофибриллы создают поперечную исчерченость) образуют сердечную мышечную ткань и скелетную мышечную ткань.

Нервная ткань.

Нервная ткань осуществляет регуляцию деятельности тканей и органов, их взаимосвязь и связь с окружающей средой. Нервная ткань состоит из нейронов (нервных клеток) и нейроглии, которая осуществляют опорную, трофическую, разграничительную и защитную функции.

Нейроны проводят нервные импульсы от места возникновения до рабочего органа. Каждая клетка имеет отростки – аксон (проводит импульс от тела клетки и заканчивается на соседнем нейроне, мышце, железе) и дендрит (несет импульс к телу, их может быть несколько и они ветвятся). По количеству отростков нейроны делятся:

Униполярные (1 отросток)

Биполярные (2 отростка)

Мультиполярные (3 и более отростков)

К биполярным клеткам относятся и псевдоуниполярные клетки (аксон и дендрит этих клеток начинаются общим выростом). Отростки нервных клеток, обычно покрытые оболочками, называются нервными волокнами. Все нервные волокна заканчиваются концевыми аппаратами, которые получили название нервных окончаний, они делятся на три группы

Эффекторные (двигательные и секреторные)

Рецепторные (чувствительные)

Концевые (межнейронные синапсы).

Клетка — это структурно-функциональная единица живого организма, способная к делению и обмену с окружающей средой. Она осуществляет передачу генетической информации путем самовоспроизведения.
Клетки очень разнообразны по строению, функции, форме, размерам (рис. 1). Последние колеблются от 5 до 200 мкм. Самыми крупными в организме человека являются яйцеклетка и нервная клетка, а самыми маленькими — лимфоциты крови. По форме клетки бывают шаровидные, веретеновидные, плоские, кубические, призматические и др. Некоторые клетки вᴍеϲте с отростками достигают длины до 1,5 м и более (например, нейроны).

Рис. 1. Формы клеток:
1 — нервная; 2 — эпителиальная; 3 — соединителытотканная; 4 — гладкая мышечная; 5— эритроцит; 6— сперматозоид; 7—яйцеклетка

Каждая клетка имеет сложное строение и представляет собой систему биополимеров, содержит ядро, цитоплазму и находящиеся в ней органеллы (рис. 2). От внешней среды клетка отграничивается клеточной оболочкой — плазма-леммой (толщина 9—10 мм), которая осуществляет транспорт необходимых веществ в клетку, и наоборот, взаимодействует с соседними клетками и межклеточным веществом. Внутри клетки находится ядро, в котором происходит синтез белка, оно хранит генетическую информацию в виде ДНК (дезоксирибонуклеиновая кислота). Ядро может иметь округлую или овоидную форму, но в плоских клетках оно несколько сплющенное, а в лейкоцитах палочковидное или бобовидное. В эритроцитах и тромбоцитах оно отсутствует. Сверху ядро покрыто ядерной оболочкой, которая представлена внешней и внутренней мембраной. В ядре находится нуклеошазма, которая представляет собой гелеобразное вещество и содержит хроматин и ядрышко.

Рис. 2. Схема ультрамикроскопического строения клетки
(по М. Р. Сапину, Г. Л. Билич, 1989):
1 — цитолемма (плазматическая мембрана); 2 — пиноцитозные пузырьки; 3 — центросома (клеточный центр, цитоцентр); 4 — гиалоплазма; 5 — эн-доплазматическая сеть (о — мембраны эндоплазматической сети, б — ри-босомы); 6— ядро; 7— связь перинуклеарного пространства с полостями эндоплазматической сети; 8 — ядерные поры; 9 — ядрышко; 10 — внутриклеточный сетчатый аппарат (комплекс Гольджи); 77-^ секреторные вакуоли; 12— митохондрии; 7J — лизосомы; 74—три последовательные стадии фагоцитоза; 75 — связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети

Ядро окружает цитоплазма, в состав которой входят ги-алоплазма, органеллы и включения.
Гиалоплазма — это основное вещество цитоплазмы, она участвует в обменных процессах клетки, содержит белки, полисахариды, нуклеиновую кислоту и др.
Постоянные части клетки, которые имеют определенную структуру и выполняют биохимические функции, называются органеллами. К ним относятся клеточный центр, митохондрии, комплекс Гольджи, эндоплазматическая (ци-топлазматическая) сеть.
Клеточный центр обычно находится около ядра или комплекса Гольджи, состоит из двух плотных образований — центриолей, которые входят в состав веретена движущейся клетки и образуют реснички и жгутики.
Митохондрии имеют форму зерен, нитей, палочек, формируются из двух мембран — внутренней и внешней. Длина митохондрии колеблется от 1 до 15 мкм, диаметр — от 0,2 до 1,0 мкм. Внутренняя мембрана образует складки (кри-сты), в которых располагаются ферменты. В митохондриях происходят расщепление глюкозы, аминокислот, окислении жирных кислот, образование АТФ (аденозинтрифосфорнай кислота) — основного энергетического материала.
Комплекс Гольджи (внутриклеточный сетчатый аппарат) имеет вид пузырьков, пластинок, трубочек, расположенных вокруг ядра. Его функция состоит в транспорте веществ, химической их обработке и выведении за пределы клетки продуктов ее жизнедеятельности.
Эндоплазматическая (цитоплазматическая) сеть формируется из агранулярной (гладкой) и гранулярной (зернистой) сети. Агранулярная Эндоплазматическая сеть образуется преимущественно мелкими цистернами и трубочками диаметром 50—100 нм, которые участвуют в обмене липи-дов и полисахаридов. Гранулярная Эндоплазматическая сеть состоит из пластинок, трубочек, цистерн, к стенкам которых прилегают мелкие образования — рибосомы, синтезирующие белки.
Цитоплазма также имеет постоянные скопления отдельных веществ, которые называются включениями цитоплазмы и имеют белковую, жировую и пигментную природу.
Клетка как часть многоклеточного организма выполняет основные функции: усвоение поступающих веществ и расщепление их с образованием энергии, необходимой для поддержания жизнедеятельности организма. Клетки обладают также раздражимостью (двигательные реакции) и способны размножаться делением. Деление клеток бывает непрямое (митоз) и редукционное (мейоз).
Митоз — самая распространенная форма клеточного деления. Он состоит из нескольких этапов — профазы, метафазы, анафазы и телофазы. Простое (или прямое) деление клеток — амитоз — встречается редко, в тех случаях, когда клетка делится на равные или неравные части. Мейоз — форма ядерного деления, при котором количество хроᴍоϲом в оплодотворенной клетке уменьшается вдвое и наблюдается перестройка генного аппарата клетки. Период от одного деления клетки к другому называется ее жизненным циклом.

Клетка входит в состав ткани, из которой состоит организм человека и животных.
Ткань — это система клеток и внеклеточных структур, объединенных единством происхождения, строения и функций.
В результате взаимодействия организма с внешней средой, которое сложилось в процессе эволюции, появились четыре вида тканей с определенными функциональными особенностями: эпителиальная, соединительная, мышечная и нервная.
Каждый орган состоит из различных тканей, которые тесно связаны между собой. Например, желудок, кишечник, другие органы состоят из эпителиальной, соединительной, ᴦладкомышечной и нервной тканей.
Соединительная ткань многих органов образует строму, а эпителиальная — паренхиму. Функция пищеварительной системы не может быть выполнена полностью, если нарушена ее мышечная деятельность.
Таким образом, различные ткани, входящие в состав того или иного органа, обеспечивают выполнение ᴦлавной функции данного органа.

Эпителиальная ткань

Эпителиальная ткань (эпителий) покрывает всю наружную поверхность тела человека и животных, выстилает слизистые оболочки полых внутренних органов (желудок, кишечник, мочевыводящие пути, плевру, перикард, брюшину) и входит в состав желез внутренней секреции. Выделяют покровный (поверхностный) и секреторный (железистый) эпителий. Эпителиальная ткань участвует в обмене веществ между организмом и внешней средой, выполняет защитную функцию (эпителий кожи), функции секреции, всасывания (эпителий кишечника), выделения (эпителий почек), газообмена (эпителий легких), имеет большую регенеративную способность.
В зависиᴍоϲти от количества клеточных слоев и формы отдельных клеток различают эпителий многослойный — оро-говевающий и неороговевающий, переходный и однослой-ный — простой столбчатый, простой кубический (плоский), простой сквамозный (мезотелий) (рис. 3).
В плоском эпителии клетки тонкие, уплотненные, содержат ᴍало цитоплазмы, дисковидное ядро находится в центре, край его неровный. Плоский эпителий выстилает альвеолы легких, стенки капилляров, сосудов, полостей сердца, где благодаря своей тонкости осуществляет диффузию различных веществ, снижает трение текущих жидкостей.
Кубический эпителий выстилает протоки многих желез, а также образует канальцы почек, выполняет секреторную функцию.
Цилиндрический эпителий состоит из высоких и узких клеток. Он выстилает желудок, кишечник, желчный пузырь, почечные канальцы, а также входит в состав щитовидной железы.

Рис. 3. Различные виды эпителия:
А — однослойный плоский; Б — однослойный кубический; В — цилиндрический; Г—однослойный реснитчатый; Д—многорадный; Е —многослойный ороговевающий

Клетки реснитчатого эпителия обычно имеют форму цилиндра, с множеством на свободных поверхностях ресничек; выстилает яйцеводы, желудочки головного мозга, спинномозговой канал и дыхательные пути, где обеспечивает транспорт различных веществ.
Многорядный эпителий выстилает мочевыводящие пути, трахею, дыхательные пути и входит в состав слизистой оболочки обонятельных полостей.
Многослойный эпителий состоит из нескольких слоев клеток. Он выстилает наружную поверхность кожи, слизистую оболочку пищевода, внутреннюю поверхность щек, влагалище.
Переходный эпителий находится в тех органах, которые подвергаются сильному растяжению (мочевой пузырь, мочеточник, почечная лоханка). Толщина переходного эпителия препятствует попаданию мочи в окружающие ткани.
Железистый эпителий составляет основную массу тех желез, у которых эпителиальные клетки участвуют в образовании и выделении необходимых организму веществ.
Существуют два типа секреторных клеток — экзокрин-ные и эндокринные. Экзокринные клетки выделяют секрет на свободную поверхность эпителия и через протоки в полость (желудка, кишечника, дыхательных путей и др.). Эндокринными называют железы, секрет (гормон) которых выделяется непосредственно в кровь или лимфу (гипофиз, щитовидная, вилочковая железы, надпочечники).
По строению экзокринные железы могут быть трубчатыми, альвеолярными, трубчато-альвеолярными.

Соединительная ткань

По свойствам соединительная ткань объединяет значительную группу тканей: собственно соединительные ткани (рыхлая волокнистая, плотная волокнистая — неоформленная и оформленная); ткани, которые имеют особые свойства (жировая, ретикулярная); скелетные твердые (костная и хрящевая) и жидкие (кровь, лимфа). Соединительная ткань выполняет опорную, защитную (механическую), формообразовательную, пластическую и трофическую функции. Эта ткань состоит из множества клеток и межклеточного вещества, в котором находятся разнообразные волокна (коллагеновые, эластические, ретикулярные).
Рыхлая волокнистая соедᴎнительная ткань содержит клеточные элементы (фибробласты, макрофаги, плазматические и тучные клетки и др.). В зависиᴍоϲти от строения и функции органа волокна по-разному ориентированы в основном веществе. Эта ткань располагается преимущественно по ходу кровеносных сосудов.
Плотная волокнистая соедᴎнительная ткань бывает оформленной и неоформленной. В оформленной плотной соедᴎнительной ткани волокна располагаются параллельно и собраны в пучок, участвуют в образовании связок, сухожилий, перепонок и фасций. Для неоформленной плотной соедᴎнительной ткани характерны переплетение волокон и небольшое количество клеточных элементов.
Жировая ткань образуется под кожей, особенно под брюшᴎной и сальником, не имеет собственного основного вещества. В каждой клетке в центре располагается жировая капля, а ядро и цитоплазма — по периферии. Жировая ткань служит энергетическим депо, защищает внутренние органы от ударов, сохраняет тепло в организме.
К скелетным тканям относятся хрящ и кость. Хрящевая ткань состоит из хрящевых клеток (хондроцитов), которые располагаются по две-три клетки, и основного вещества, находящегося в состоянии геля. Различают гиалᴎновые, фиброзные и эластические хрящи. Из гиалᴎнового хряща состоят хрящи суставов, ребер, он входит в щитовидный и перстневидный хрящи гортани, дыхательные пути. Волокнистый хрящ входит в межпозвоночные и внутрисуставные диски, в мениски, покрывает суставные поверхности височно-нижнечелюстного и грудᴎно-ключичного суставов. Из эластического хряща построены надгортанник, черпало-видные, рожковидные и клᴎновидные хрящи, ушная раковᴎна, хрящевая часть слуховой трубы и наружного слухового прохода.
Кровь и лимфа, а также межтканевая жидкость являются внутренней средой организма. Кровь несет тканям питательные вещества и кислород, удаляет продукты обмена и углекислый газ, вырабатывает антитела, переносит гормоны, которые регулируют деятельность различных систем организма. Несмотря на то, что кровь циркулирует по кровеносным сосудам и отделена от других тканей сосудистой стенкой, форменные элементы, а также вещества плазмы крови могут переходить в соедᴎнительную ткань, которая окружает кровеносные сосуды. Благодаря этому кровь обеспечивает постоянство состава внутренней среды организма.
В зависиᴍоϲти от характера транспортируемых веществ различают следующие основные функции крови: дыхательную, выделительную, питательную, гомеостатическую, регуляторную, защитную и терморегуляторную.
Благодаря дыхательной функции кровь переносит кислород от легких к органам и тканям и углекислый газ от периферических тканей в легкие. Выделительная функция осуществляет транспорт продуктов обмена (мочевой кислоты, билирубᴎна и др.) к органам выделения (почки, кишечник, кожа и др.) с целью последующего их удаления как веществ, вредных для организма. Питательная функция основана на перемещении питательных веществ (глюкозы, амᴎнокислот и др.), образовавшихся в результате пищеварения, к органам и тканям. Гомеостатическая функция — это равномерное распределение крови между органами и тканями, поддержание постоянного осмотического давления и рН с помощью белков плазмы крови и др. Регуляторная функция — это перенос выработанных железами внутренней секреции гормонов в определенные органы-мишени для передачи ᴎнформации внутри организма. Защитная функция заключается в обезвреживании клетками крови микроорганизмов и их токсᴎнов, формировании антител, удалении продуктов распада тканей, остановке кровотечения в результате образования тромба. Терморегуляторная функция осуществляется путем переноса тепла наружу из глубоколежащих органов к сосудам кожи, а также путем равномерного распределения тепла в организме в результате высокой теплоемкости и теплопроводности крови.
У человека масса крови составляет 6—8 % массы тела и в норме приблизительно равна 4,5—5,0 л. В состоянии покоя циркулирует всего 40—50 % всей крови, остальная часть находится в депо (печень, селезенка, кожа). В ᴍалом круге кровообращения содержится 20—25 % объема крови, в большом круге — 75—85 % крови. В артериальной системе циркулирует 15—20 % крови, в венозной — 70—75 %, в капиллярах — 5—7 %.
Кровь состоит из клеточных (форменных) элементов (45 %) и жидкой части — плазмы (65 %). После выделения форменных элементов в плазме содержатся растворенные в воде соли, белки, углеводы, биологически активные соедᴎнения, а также углекислый газ и кислород. В плазме находится около 90 % воды, 7—8 % белка, 1,1 % других органических веществ и 0,9 % неорганических компонентов. Она обеспечивает постоянство объема внутри сосудистой жидкости и кислотно-щелочное равновесие (КЩР), а также участвует в переносе активных веществ и продуктов метаболизма. Белки плазмы делятся на две основные группы:
альбумᴎны и глобулᴎны. К первой группе относится около 60 % белков плазмы. Глобулᴎны представлены фракциями: альфа1-, альфа2-, бета2- и гамма-глобулᴎнами. В глобулᴎновую фракцию входит также фибрᴎноген. Белки плазмы участвуют в таких процессах, как образование тканевой жидкости, лимфы, мочи и всасывание воды. Питательная функция плазмы связана с наличием в ней липи-дов, содержание которых зависит от особенностей питания.
Сыворотка крови не содержит фибрᴎноген, этим она отличается от плазмы и не свертывается. Сыворотку готовят из плазмы крови путем удаления из нее фибрᴎна. Кровь помещают в цилᴎндрический сосуд, через определенное время она свертывается и превращается в сгусток, из которого извлекают светло-желтую жидкость — сыворотку крови.
Кровь представляет собой коллоидно-полимерный раствор, растворителем в котором является вода, а растворимыми веществами — соли, низкомолекулярные органические соедᴎнения, белки и их комплексы.
Осмотическое давление крови — это сила движения растворителя через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный. Осмотическое давление крови находится на относительно постоянном для обмена веществ уровне и равно 7,3 атм (5600 мм рт. ст., или 745 кПа). Оно зависит от содержания ионов и солей, которые находятся в диссоциированном состоянии, а также от количества растворенных в организме жидкостей. Концентрация солей в крови составляет 0,9 %, от их содержания ᴦлавным образом и зависит осмотическое давление крови.
Осмотическое давление определяется концентрацией различных веществ, растворенных в жидкостях организма, на необходимом физиологическом уровне.
Таким образом, при помощи осмотического давления вода распределяется равномерно между клетками и тканями. Растворы, у которых уровень осмотического давления выше, чем в содержимом клеток (гипертонические растворы), вызывают сморщивание клеток в результате перехода воды из клетки в раствор. Растворы с более низким уровнем осмотического давления, чем в содержимом клеток (гипотонические растворы), увеличивают объем клеток в результате перехода воды из раствора в клетку. Растворы, осмотическое давление которых равно осмотическому давлению содержимого клеток и которые не вызывают изменения клеток, называют изотоническими.
Регуляция осмотического давления осуществляется ней-рогуморальным путем. Кроме того, в стенках кровеносных сосудов, тканях, гипоталамусе находятся специальные ос-морецепторы, которые реагируют на изменения осмотического давления. Раздражение их приводит к изменению деятельности выделительных органов (почки, потовые железы).
В крови поддерживается постоянство рН реакции. Реакция среды определяется концентрацией водородных ионов, выражающихся водородным показателем рН, который имеет большое значение, поскольку абсолютное большинство биохимических реакций может протекать в норме только при определенных показателях рН. Кровь человека имеет слабощелочную реакцию: значение рН венозной крови 7,36; артериальной — 7,4. Жизнь возможна в довольно узких пределах сдвига рН — от 7,0 до 7,8. Несмотря на беспрерывное поступление в кровь кислых и щелочных продуктов обмена, рН крови сохраняется на относительно постоянном уровне. Это постоянство поддерживается физико-химическими, биохимическими и физиологическими механизмами.
Известно несколько буферных систем крови (карбонатная, белков плазмы, фосфатная и гемоглобина), которые связывают гидроксильные (ОН") и водородные (ЬГ) ионы и, следовательно, удерживают реакцию крови на постоянном уровне. При этом из организма выделяется избыток образованных кислых и щелочных продуктов обмена почками с мочой, а легкими выделяется углекислый газ.
К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.
Эритроциты — красные кровяные тельца двояковогнутой формы. У них нет ядра. Средний диаметр эритроцитов 7—8 мкм, он приблизительно равен внутреннему диаметру кровеносного капилляра. Форма эритроцита повышает возможность газообмена, способствует диффузии газов с поверхности на весь объем клетки. Эритроциты отличаются большой эластичностью. Они легко проходят по капиллярам, имеющим вдвое меньший диаметр, чем сама клетка. Общая поверхность площади всех эритроцитов взрослого человека составляет около 3800 м2, т. е; в 1500 раз превышает поверхность тела.
В крови мужчин содержится около 5�1012/л эритроцитов, в крови женщин — 4,5 . Ю^/л. При усиленной физической нагрузке количество эритроцитов в крови может увеличиться до 6�1012/л. Это связано с поступлением в круг кровообращения депонированной крови.
Главная особенность эритроцитов — наличие в них гемоглобина, который связывает кислород (превратившись в оксигемоглобин) и отдает его периферическим тканям. Гемоглобин, отдавший кислород, называется восстановленным или редуцированным, он имеет цвет венозной крови. Отдав кислород, кровь постепенно вбирает в себя конечный продукт обмена веществ — СО2 (углекислый газ). Реакция присоединения гемоглобина к СО2 проходит сложнее, чем связывание с кислородом. Это объясняется ролью СО2 в образовании в организме кислотно-щелочного равновесия. Гемоглобин, связывающий углекислый газ, называется карбогемоглобином. Под влиянием находящегося в эритроцитах фермента карбоангидразы угольная кислота расщепляется на СО2 и Н2О. Углекислый газ выделяется легкими и изменения реакции крови не происходит. Особенно легко гемоглобин присоединяется к угарному газу (СО) вследствие его высокого химического сродства (в 300 раз выше, чем к О2) к гемоглобину. Блокированный угарным газом гемоглобин уже не может служить переносчиком кислорода и называется карбоксигемоглобином. В результате этого в организме возникает кислородное голодание, сопровождающееся рвотой, головной болью, потерей сознания.
Гемоглобин состоит из белка глобина и простетической группы гема, которые присоединяются к четырем полипептидным цепям глобина и придают крови красный цвет. В норме в крови содержится около 140 г/л гемоглобина: у мужчин — 135—155 г/л, у женщин — 120—140 г/л.
Уменьшение количества гемоглобина эритроцитов в крови называется анемией. Она наблюдается при кровотечении, интоксикации, дефиците витамина В12, фолиевой кислоты и др.
Продолжительность жизни эритроцитов около 3—4 месяцев. Процесс разрушения эритроцитов, при котором гемоглобин выходит из них в плазму, называется гемолизом.
При нахождении крови в вертикально расположенной пробирке наблюдается оседание эритроцитов вниз. Это происходит потому, что удельная плотноϲть эритроцитов выше плотноϲти плазмы (1,096 и 1,027).
Скорость оседания эритроцитов (СОЭ) выражается в миллиметрах высоты столба плазмы над эритроцитами за единицу времени (обычно за 1 ч). Эта реакция характеризует некоторые физико-химические свойства крови. СОЭ у мужчин в норме составляет 5—7 мм/ч, у женщин — 8— 12 мм/ч. Механизм оседания эритроцитов зависит от многих факторов, например от количества эритроцитов, их морфологических особенностей, величины заряда, способности к агломерации, белкового состава плазмы и др. Повышенная СОЭ характерна для беременных — до 30 мм/ч, больных с инфекционными и воспалительными процессами, а также со злокачественными образованиями — до 50 мм/ч и более.
Лейкоциты — белые кровяные тельца. По размерам они больше эритроцитов, имеют ядро. Продолжительность жизни лейкоцитов — несколько дней. Количество лейкоцитов в крови человека в норме составляет 4—9�109/л и колеблется в течение суток. Меньше всего их утром натощак.
Увеличение количества лейкоцитов в крови называется лейкоцитозом, а уменьшение — лейкопенией. Различают физиологический и реактивный лейкоцитоз. Первый чаще наблюдается после приема пищи, во время беременности, при мышечных нагрузках, боли, эмоциональных стрессах и др. Второй вид характерен для воспалительных процессов и инфекционных заболеваний. Лейкопения отмечается при некоторых инфекционных заболеваниях, воздействии ионизирующего излучения, приеме лекарственных препаратов и др.
Лейкоциты всех видов обладают подвижностью амеб и при наличии соответствующих химических раздражителей проходят через эндотелий капилляров (диапедез) и устремляются к раздражителю: микробам, инородным телам или комплексам антиген — антитело.
По наличию в цитоплазме зернистости лейкоциты делятся на зернистые (гранулоциты) и незернистые (агранулоциты).
Клетки, гранулы которых окрашиваются кислыми красками (эозин и др.), называют эозинофилами; основными красками (метиленовый синий и др.) — базофилами; нейтральными красками — нейтрофилами. Первые окрашиваются в розовый цвет, вторые — в синий, третьи — в розово-фиолетовый.
Гранулоциты составляют 72 % общего-количества лейкоцитов, из них 70 % нейтрофилов, 1,5 % эозинофилов и 0,5 % базофилов. Нейтрофилы способны проникать в межклеточные пространства к инфицированным участкам тела, поглощать и переваривать болезнетворные бактерии. Количество эозинофилов увеличивается при аллергических реакциях, бронхиальной астме, сенной лихорадке, они обладают антигистаминным действием. Базофилы вырабатывают гепарин и гистамин.
Агранулоциты — это лейкоциты, которые состоят из ядра овальной формы и незернистой цитоплазмы. К ним относятся моноциты и лимфоциты. Моноциты имеют ядро бобовидной формы, образуются в костном мозге. Они активно проникают в очаги воспаления и поглощают (фагоцитируют) бактерии. Лимфоциты образуются в вилочковой железе (тимусе), из стволовых лимфоидных клеток костного мозга и селезенки. Лимфоциты вырабатывают антитела и принимают участие в клеточных иммунных реакциях. Существуют Т- и В-лимфоциты. Т-лимфоциты при помощи ферментов самостоятельно разрушают микроорганизмы, вирусы, клетки трансплантируемой ткани и получили название киллеров — клеток-убийц. В-лимфоциты при встрече с инородным веществом при помощи специфических антител нейтрализуют и связывают эти вещества, подготавливая их к фагоцитозу. Состояние, при котором количество лимфоцитов превышает обычный уровень их содержания, называется лимфоцитозом, а снижение — лимфопенией.
Лимфоциты являются ᴦлавным звеном иммунной системы, они участвуют в процессах клеточного роста, регенерации тканей, управлении генетическим аппаратом других клеток.
Соотношение различных видов лейкоцитов в крови называется лейкоцитарной формулой (табл. 1).
Таблица 1
Лейкоцитарная формула


Лейкоциты,
10%

Эозинофи-
лы, %

Базо
филы,
%
Нейтрофилы, %
Лимфоциты, %

Моноциты,
%

Юные


палоч-
коядерные
сег-
менто-
ядер-
ные
4,0-9,0 1-4 0-0,5 0-1 2-5 55-68 25-30 6-8

Количество отдельных видов лейкоцитов при ряде заболеваний увеличивается. Например, при коклюше, брюшном тифе повышается уровень лимфоцитов, при малярии — моноцитов, а при пневмонии и других инфекционных заболеваниях — нейтрофилов. Количество эозинофилов увеличивается при аллергических заболеваниях (бронхиальная астма, скарлатина и др.). Характерные изменения лейкоцитарной формулы дают возможность поставить точный диагноз.
Тромбоциты (кровяные пластинки) — бесцветные сферические безъядерные тельца диаметром 2—5 мкм. Они образуются в крупных клетках костного мозга — мегакариоцитах. Продолжительность жизни тромбоцитов от 5 до 11 дней. Они играют важную роль в свертывании крови. Значительная их часть сохраняется в селезенке, печени, легких и по мере необходиᴍоϲти поступает в кровь. При мышечной работе, принятии пищи, беременности количество тромбоцитов в крови увеличивается. В норме содержание тромбоцитов составляет около 250�109/л.
Группы крови — иммуногенетические и индивидуальные признаки крови, которые объединяют людей по сходству определенных антигенов — агглютиногенов — в эритроцитах и находящиᴍϲя в плазме крови антител — агглютининов.
По наличию или отсутствию в мембранах донорских эритроцитов специфических мукополисахаридов — агглютиногенов А и В и в плазме крови реципиента агглютининов а и р определяется группа крови (табл. 2).
Таблица 2
Зависимость группы крови от наличия в ней агглютиногенов
эритроцитов и агглютининов плазмы

Группы крови Агглютиногены в эритроцитах Агглютинины в сыворотке
0(1) a, b
А (II) А b
В (III) В a
AB(IV) А, В

В связи с этим различают четыре группы крови: 0 (I), А (II), В (III) и АВ (IV). При совмещении сходных агглютиногенов эритроцитов с агглютининами плазмы происходит реакция агглютинации (склеивания) эритроцитов, которая лежит в основе групповой несовᴍеϲтиᴍоϲти крови. Этим положением необходимо руководствоваться при переливании крови.
Учение о группах крови значительно усложнилось в связи с открытием новых агглютиногенов. Например, группа А имеет ряд подгрупп, кроме того, найдены и новые агглютиногены — М, N, S, Р и др. Эти факторы иной раз являются причиной осложнений при повторных переливаниях крови.
Люди с первой группой крови считаются универсальными донорами. Однако выяснилось, что эта универсальность не абсолютна. Это связано с тем, что у людей с первой группой крови в значительной степени выявлены иммунные анти-А- и анти-В-агглютинины. Переливание такой крови может привести к тяжелым осложнениям и, возможно, к летальному исходу. Эти данные послужили основанием к переливанию только одногруппной крови (рис. 4).
Переливание несовᴍеϲтимой крови ведет к развитию гемотрансфузионного шока (тромбозу, а затем гемолизу эритроцитов, поражению почек и др.).

Рис. 4. Совᴍеϲтимость групп крови:
черта — совᴍеϲтима; квадрат — несовᴍеϲтима

Кроме основных агглютиногенов А и В, в эритроцитах могут быть и другие, в частноϲти так называемый резус-фактор (Rh-фактор), который впервые был найден в крови обезьяны макака-резус. По наличию или отсутствию резус-фактора выделяют резус-положительные (около 85 % людей) и резус-отрицательные (около 15 % людей) организмы. В лечебной практике резус-фактор имеет большое значение. Так, у резус-отрицательных людей переливание крови или повторные беременности вызывают образование резус-антител. При переливании резус-положительной крови людям с резус-антителами происходят тяжелые гемолити-ческие реакции, сопровождающиеся разрушением перелитых эритроцитов.
В основе развития резус-конфликтной беременности лежит попадание в организм через плаценту резус-отрицательной женщины резус-положительных эритроцитов плода и образование специфических антител (рис. 5).
В таких случаях первый ребенок, унаследовавший резус-положительную принадлежность, рождается нормальным. А при второй беременности антитела матери, проникшие в кровь плода, вызывают разрушение эритроцитов, накоп- ление билирубина в крови новорожденного и появление гемолитической желтухи с поражением внутренних органов ребенка.


Рис. 5. Развитие резус-конфликта и его предотвращение:
I — резус-конфликт; II — предотвращение резус-конфликта

Свертывание крови является защитной реакцией, которая предупреждает потерю крови и попадание в организм болезнетворных микробов. Это составляет многостадийный процесс. В нем принимает участие 12 факторов, которые находятся в плазме крови, а также вещества, высвобождающиеся из поврежденных тканей и тромбоцитов. В свертывании крови выделяют три стадии. В первой стадии кровь, вытекающая из раны, смешивается с веществами поврежденных тканей, разрушенных тромбоцитов и соприкасается с воздухом. Затем освобожденный предшественник тромбопластина под влиянием факторов плазмы ионов кальция (Са2+) превращается в активный тромбопластин. Во второй стадии при участии тромбопластина, факторов плазмы, ионов кальция неактивный белок плазмы протромбин превращается в тромбин. В третьей стадии тромбин (протео-литический фермент) расщепляет молекулу белка плазмы фибриногена.на мелкие части и создает сеть нитей фибрина (нерастворимый белок), который выпадает в осадок. В сетях из фибрина задерживаются форменные элементы крови и образуют сгусток, который препятствует потере крови и проникновению в рану микроорганизмов. После удаления фибрина из плазмы остается жидкость — сыворотка.
Кровь является лечебным средством. В практической медицине широко применяется переливание крови и ее препаратов. Для обеспечения кровью широко распространено донорство. Людей, которые сдают кровь в лечебных целях, называют донорами. У активных доноров разовая доза сдачи крови составляет 250—450 мл. Как правило, при этом происходит снижение количества гемоглобина и эритроцитов пропорционально количеству взятой крови. Скорость возвращения к норме крови донора зависит от многих причин,

Ткань - это совокупность клеток и межклеточного вещества, имеющих одинаковое строение, функции и происхождение.

В организме млекопитающих животных и человека выделяют 4 типа тканей: эпителиальной, соединительной, в которой можно выделить костную, хрящевую и жировую ткани; мышечной и нервной.

Ткань - расположение в организме, виды, функции, строение

Ткани - это система клеток и межклеточного вещества, имеющих одинаковое строение, происхождение и функции.

Межклеточное вещество - продукт жизнедеятельности клеток. Оно обеспечивает связь между клетками и формирует для них благоприятную среду. Оно может быть жидким, например, плазма крови; аморфным - хрящи; структурированным - мышечные волокна; твёрдым - костная ткань (в виде соли).

Клетки ткани имеют различную форму, которая определяет их функцию. Ткани делятся на четыре типа:

  • эпителиальная - пограничные ткани: кожа, слизистая;
  • соединительная - внутренняя среда нашего организма;
  • мышечная ткань;
  • нервная ткань.

Эпителиальная ткань

Эпителиальные (пограничные) ткани - выстилают поверхность тела, слизистые оболочки всех внутренних органов и полостей организма, серозные оболочки, а также формируют железы внешней и внутренней секреции. Эпителий, выстилающий слизистую оболочку, располагается на базальной мембране, а внутренней поверхностью непосредственно обращен к внешней среде. Его питание совершается путём диффузии веществ и кислорода из кровеносных сосудов через базальную мембрану.

Особенности: клеток много, межклеточного вещества мало и оно представлено базальной мембраной.

Эпителиальные ткани выполняют следующие функции:

  • защитная;
  • выделительная;
  • всасывающая.

Классификация эпителиев. По числу слоёв различают однослойный и многослойный. По форме различают: плоский, кубический, цилиндрический.

Если все эпителиальные клетки достигают базальной мембраны, это однослойный эпителий, а если с базальной мембраной связаны только клетки одного ряда, а другие свободны, - это многослойный. Однослойный эпителий может быть однорядным и многорядным, что зависит от уровня расположения ядер. Иногда одноядерный или многоядерный эпителий имеет мерцательные реснички, обращенные во внешнюю среду.

Многослойный эпителий Эпителиальная (покровная) ткань, или эпителий, представляет собой пограничный слой клеток, который выстилает покровы тела, слизистые оболочки всех внутренних органов и полостей, а также составляет основу многих желез.

Железистый эпителий Эпителий отделяет организм (внутреннюю среду) от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией).

Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток - желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

Однослойный плоский эпителий - выстилает поверхность серозных оболочек: плевра, лёгкие, брюшина, перикард сердца.

Однослойный кубический эпителий - образует стенки канальцев почек и выводные протоки желёз.

Однослойный цилиндрический эпителий - образует слизистую желудка.

Каёмчатый эпителий - однослойный цилиндрический эпителий, на наружной поверхности клеток которого имеется каёмка, образованная микроворсинками, обеспечивающими всасывание питательных веществ - выстилает слизистую тонкого кишечника.

Мерцательный эпителий (реснитчатый эпителий) - псевдомногослойный эпителий, состоящий из цилиндрических клеток, внутренний край которых, т. е. обращенный в полость или канал, снабжён постоянно колеблющимися волосковидными образованиями (ресничками) - реснички обеспечивают движение яйцеклетки в трубах; в дыхательных путях удаляет микробов и пыль.

Многослойный эпителий расположен на границе организма и внешней среды. Если в эпителии протекают процессы ороговения, т. е. верхние слои клеток превращаются в роговые чешуйки, то такой многослойный эпителий называется ороговевающим (поверхность кожи). Многослойный эпителий выстилает слизистую рта, пищевой полости, роговую глаза.

Переходный эпителий выстилает стенки мочевого пузыря, почечных лоханок, мочеточника. При наполнении этих органов переходный эпителий растягивается, а клетки могут переходить из одного ряда в другой.

Железистый эпителий - образует железы и выполняет секреторную функцию (выделяет вещества - секреты, которые либо выводятся во внешнюю среду, либо поступают в кровь и лимфу (гормоны)). Способность клеток вырабатывать и выделять вещества, необходимые для жизнедетельности организма, называется секрецией. В связи с этим такой эпителий получил также название секреторного эпителия.

Соединительная ткань

Соединительная ткань Состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь - клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.

В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами - от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

Костная ткань

Костная ткань Костная ткань, образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

Хрящевая ткань

Хрящевая ткань состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

Различают три разновидности хрящевой ткани: гиалиновую, входящую в состав хрящей трахеи, бронхов, концов ребер, суставных поверхностей костей; эластическую, образующую ушную раковину и надгортанник; волокнистую, располагающуюся в межпозвоночных дисках и соединениях лобковых костей.

Жировая ткань

Жировая ткань похожа на рыхлую соединительную ткань. Клетки крупные, наполнены жиром. Жировая ткань выполняет питательную, формообразующую и терморегулирующую функции. Жировая ткань подразеляется на два типа: белую и бурую. У человека преобладает белая жировая ткань, часть ее окружает органы, сохраняя их положение в теле человека и другие функции. Количество бурой жировой ткани у человека невелико (она имеется главным образом у новорожденного ребенка). Главная функция бурой жировой ткани - теплопродукция. Бурая жировая ткань поддерживает температуру тела животных во время спячки и температуру новорожденных детей.

Мышечная ткань

Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения - произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани - гладкую (неисчерченную) и поперечнополосатую (исчерченную).

Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками - актином и миозином.

Нервная ткань

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

Нейрон - основная структурная и функциональная единица нервной ткани. Главная его особенность - способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела - дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце - аксоны. Аксоны образуют нервные волокна.

Нервный импульс - это электрическая волна, бегущая с большой скоростью по нервному волокну.

В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

Теперь всю полученную информацию мы можем объединить в таблицу.

Типы тканей (таблица)

Группа тканей

Виды тканей

Строение ткани

Местонахождение

Эпителий Плоский Поверхность клеток гладкая. Клетки плотно примыкают друг к другу Поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов Покровная, защитная, выделительная (газообмен, выделение мочи)
Железистый Железистые клетки вырабатывают секрет Железы кожи, желудок, кишечник, железы внутренней секреции, слюнные железы Выделительная (выделение пота, слез), секреторная (образование слюны, желудочного и кишечного сока, гормонов)
Мерцательный (реснитчатый) Состоит из клеток с многочисленными волосками(реснички) Дыхательные пути Защитная (реснички задерживают и удаляют частицы пыли)
Соединительная Плотная волокнистая Группы волокнистых, плотно лежащих клеток без межклеточного вещества Собственно кожа, сухожилия, связки, оболочки кровеносных сосудов, роговица глаза Покровная, защитная, двигательная
Рыхлая волокнистая Рыхло расположенные волокнистые клетки, переплетающиеся между собой. Межклеточное вещество бесструктурное Подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы Соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Осуществляет терморегуляцию тела
Хрящевая Живые круглые или овальные клетки, лежащие в капсулах, межклеточное вещество плотное, упругое, прозрачное Межпозвоночные диски, хрящи гортани, трахей, ушная раковина, поверхность суставов Сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин
Костная Живые клетки с длинными отростками, соединенные между собой, межклеточное вещество - неорганические соли и белок оссеин Кости скелета Опорная, двигательная, защитная
Кровь и лимфа Жидкая соединительная ткань, состоит из форменных элементов (клеток) и плазмы (жидкость с растворенными в ней органическими и минеральными веществами - сыворотка и белок фибриноген) Кровеносная система всего организма Разносит О 2 и питательные вещества по всему организму. Собирает СО 2 и продукты диссимиляции. Обеспечивает постоянство внутренней среды, химический и газовый состав организма. Защитная (иммунитет). Регуляторная (гуморальная)
Мышечная Поперечно-полосатая Многоядерные клетки цилиндрической формы до 10 см длины, исчерченные поперечными полосами Скелетные мышцы, сердечная мышца Произвольные движения тела и его частей, мимика лица, речь. Непроизвольные сокращения (автоматия) сердечной мышцы для проталкивания крови через камеры сердца. Имеет свойства возбудимости и сократимости
Гладкая Одноядерные клетки до 0,5 мм длины с заостренными концами Стенки пищеварительного тракта, кровеносных и лимфатических сосудов, мышцы кожи Непроизвольные сокращения стенок внутренних полых органов. Поднятие волос на коже
Нервная Нервные клетки (нейроны) Тела нервных клеток, разнообразные по форме и величине, до 0,1 мм в диаметре Образуют серое вещество головного и спинного мозга Высшая нервная деятельность. Связь организма с внешней средой. Центры условных и безусловных рефлексов. Нервная ткань обладает свойствами возбудимости и проводимости
Короткие отростки нейронов - древовидноветвящиеся дендриты Соединяются с отростками соседних клеток Передают возбуждение одного нейрона на другой, устанавливая связь между всеми органами тела
Нервные волокна - аксоны (нейриты) - длинные выросты нейронов до 1,5 м длины. В органах заканчиваются ветвистыми нервными окончаниями Нервы периферической нервной системы, которые иннервируют все органы тела Проводящие пути нервной системы. Передают возбуждение от нервной клетки к периферии по центробежным нейронам; от рецепторов (иннервируемых органов) - к нервной клетке по центростремительным нейронам. Вставочные нейроны передают возбуждение с центростремительных (чувствительных) нейронов на центробежные(двигательные)
Сохранить в соцсетях:

Ткань - совокупность клеток и межклеточного вещества, обладающих общим строением, функцией и происхождением.

Эпителиальная ткань

Функции

  • Пограничная (наружный слой кожи, внутренний слой дыхательных путей, легких, желудка, кишечника).
  • Выделение веществ (железы).

Особенности строения:

  • Клетки плотно прилегают друг к другу, межклеточного вещества мало.
  • Клетки очень быстро делятся, за счет этого повреждения эпителия быстро залечиваются.

Соединительная ткань

Функции

  • Питательная (кровь, жировая ткань)
  • Опорная (кость, хрящ, соединительнотканная оболочка всех органов).

Особенность строения: межклеточного вещества очень много.

Мышечная ткань

Функции: возбудимость и сократимость.


Три типа мышечной ткани поперечно-полосатая скелетная поперечно-полосатая сердечная гладкая
Входит в состав скелетных мышц (например, мышц конечностей) сердца внутренних органов (желудок, кровеносные сосуды и т.п.)
клетки многоядерные одноядерные
управление подчиняется сознанию (иннервируется соматической нервной системой) не подчиняется сознанию (иннервируется вегетативной нервной системой)
сокращается быстро медленно

Нервная ткань

Функции: возбудимость и проводимость.


Основные клетки нервной ткани - нейроны - состоят из тела и отростков. Отростки бывают двух видов:

  • дендриты - короткие, разветвленные, принимают возбуждение;
  • аксон - длинный, неразветвленный, отдает возбуждение.

Кроме нейронов, в нервной ткани выделяют еще клетки-спутники (нейроглия), их в 10 раз больше, чем нейронов, они выполняют питательную, опорную и защитную функцию.


Аксоны могут быть покрыты белым жироподобным веществом миелином, ускоряющим проведение нервного импульса. Скопление таких аксонов образует белое вещество нервной системы. Клетки-спутники, тела нейронов и дендриты образуют серое вещество .

БОЛЬШЕ ИНФОРМАЦИИ: ,
ЗАДАНИЯ ЧАСТИ 2:

Тесты и задания

Установите соответствие между характеристикой ткани человека и её типом: 1) эпителиальная, 2) соединительная. Запишите цифры 1 и 2 в правильном порядке.
А) осуществляет транспорт веществ в организме

В) образует эпидермис кожи
Г) вырабатывает антитела

Е) содержит много межклеточного вещества

Ответ


Выберите один, наиболее правильный вариант. Какие функции выполняют в нервной ткани клетки-спутники
1) возникновения возбуждения и его проведения по нервным волокнам
2) питательную, опорную и защитную
3) передачи нервных импульсов от нейрона к нейрону
4) постоянного обновления нервной ткани

Ответ



Все перечисленные ниже признаки, кроме двух, можно использовать для описания изображенной на рисунке ткани. Определите два признака, «выпадающие» из общего списка и запишите цифры, под которыми они указаны.
1) способность к сократимости
2) наличие большого количества ядер
3) способность проводить водные растворы
4) способность к проведению импульсов
5) наличие хорошо развитого межклеточного вещества

Ответ


1. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие функции в организме человека выполняет соединительная ткань?
1) выполняет рефлекторную функцию
2) участвует в транспорте кислорода от лёгких к клеткам
3) обеспечивает постоянство состава внутренней среды
4) вырабатывает пищеварительные ферменты
5) образует подкожную жировую клетчатку
6) задерживает и удаляет частицы пыли в носовой полости

Ответ


2. Выберите три особенности соединительной ткани.
1) Клетки плотно прилегают друг к другу
2) Межклеточного вещества мало
3) Хорошо развито межклеточное вещество
4) Заполняет промежутки между органами
5) Клетки разнообразны по строению и функциям

Ответ


3. Выберите два признака, характеризующих особенности соединительной ткани человека. Запишите цифры, под которыми они указаны.
1) межклеточное вещество хорошо развито
2) клетки всегда одноядерные
3) в клетках содержится белок миозин
4) клетки содержат много митохондрий
5) ткань может быть жидкой

Ответ


4. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Соединительная ткань организма человека
1) представлена кровью, лимфой, хрящом
2) выстилает слизистые оболочки желудка, ротовой полости
3) может быть жидкой или твёрдой
4) обладает возбудимостью и проводимостью
5) имеет слабо выраженное межклеточное вещество
6) выполняет транспортную функцию

Ответ


Установите соответствие между характеристикой ткани и видом ткани, обладающим этой характеристикой: 1) эпителиальная, 2) соединительная, 3) мышечная. Запишите цифры 1, 2 и 3 в правильном порядке.
А) состоит из одноядерных и многоядерных клеток
Б) бывает жидкой, твердой, эластичной
В) выстилает слизистые оболочки органов
Г) образует пищеварительные железы
Д) межклеточное вещество сильно развито
Е) обладает возбудимостью

Ответ


Установите соответствие между характеристиками тканей человека и их типами: 1) мышечная, 2) соединительная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) способна накапливать жир
Б) некоторые клетки содержат гемоглобин
В) её клетки длинные с поперечной исчерченностью
Г) обладает сократимостью и возбудимостью
Д) межклеточное вещество хорошо развито
Е) клетки одноядерные или многоядерные

Ответ


Выберите три варианта. Свойствами возбудимости и сократимости обладают ткани
1) сердечная мышечная
2) железистая эпителиальная
3) гладкая мышечная
4) нервная
5) рыхлая соединительная
6) поперечнополосатая мышечная

Ответ


Выберите один, наиболее правильный вариант. Изменение диаметра кровеносных сосудов происходит за счет ткани
1) эпителиальной
2) соединительной
3) гладкой мышечной

Ответ


1. Выберите три варианта. Поперечнополосатая мышечная ткань, в отличие от гладкой





Ответ


2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Каковы особенности поперечнополосатой мышечной ткани?
1) образует мышцы, расположенные в стенках внутренних органов
2) состоит из веретеновидных клеток с одним ядром
3) образует скелетные мышцы
4) состоит из длинных многоядерных клеток
5) имеет волокна с поперечной исчерченностью
6) участвует в изменении просветов кровеносных сосудов

Ответ


3. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Поперечнополосатая мышечная ткань человека
1) образует мускулатуру кровеносных сосудов
2) входит в состав языка, глотки и начального отдела пищевода
3) выполняет непроизвольные сокращения
4) имеет двигательные центры в коре головного мозга
5) регулируется соматическим отделом нервной системы
6) состоит из одиночных веретеновидных клеток

Ответ


Выберите один, наиболее правильный вариант. Изменение просвета артерий происходит у человека за счет ткани
1) эпителиальной
2) соединительной
3) гладкой мышечной
4) поперечнополосатой мышечной

Ответ


Выберите один, наиболее правильный вариант. Серое вещество в головном и спинном мозге человека образовано
1) телами чувствительных нейронов
2) длинными отростками двигательных нейронов
3) длинными отростками чувствительных нейронов
4) телами двигательных и вставочных нейронов

Ответ


Установите соответствие между характеристиками и типами ткани человека: 1) эпителиальная, 2) соединительная, 3) нервная. Запишите цифры 1, 2 и 3 в правильном порядке.
А) обладает проводимостью
Б) выполняет функцию опоры и питания
В) образует наружный покров кожи
Г) вырабатывает антитела
Д) состоит из тесно прилегающих клеток
Е) образует серое вещество спинного мозга

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Сердечная мышца человека характеризуется
1) наличием поперечной исчерченности
2) обилием межклеточного вещества
3) самопроизвольными ритмичными сокращениями
4) наличием веретеновидных клеток
5) многочисленными соединениями между клетками
6) отсутствием ядер в клетках

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Гладкая мышечная ткань, в отличие от поперечнополосатой
1) состоит из многоядерных клеток
2) состоит из вытянутых клеток с овальным ядром
3) обладает большей быстротой и энергией сокращения
4) составляет основу скелетной мускулатуры
5) располагается в стенках внутренних органов
6) сокращается медленно, ритмично, непроизвольно

Ответ


Установите соответствие между характеристикой ткани и ее типом: 1) эпителиальная, 2) соединительная. Запишите цифры 1 и 2 в правильном порядке.
А) межклеточное вещество практически отсутствует
Б) выполняет питательную и опорную функции
В) выстилает изнутри полости кишечника и других органов
Г) образует подкожную жировую клетчатку
Д) является компонентом (частью) внутренней среды организма

Ответ



Установите соответствие между характеристиками и типами тканей человека, изображенными на рисунке. Запишите цифры 1-4 в правильном порядке.
А) состоит из многоядерных клеток
Б) обладает возбудимостью и проводимостью
В) клетки плотно прилегают друг к другу
Г) содержит эластичные волокна
Д) клетка имеет тело и отростки
Е) способна к сократимости

Ответ




Б) содержит много межклеточного вещества
В) образует потовые железы
Г) обеспечивает транспорт газов
Д) образует поверхностный слой кожи
Е) выполняет опорную и механическую функции

Ответ


Установите соответствие между характеристикой ткани человека и ее типом: 1) эпителиальная, 2) соединительная.
А) состоит из плотно прилегающих друг к другу клеток
Б) состоит из рыхло расположенных клеток
В) содержит жидкое или твердое межклеточное вещество
Г) образует ногти и волосы
Д) обеспечивает связь между органами

Ответ


Установите соответствие между характеристикой ткани и ее типом: 1) эпителиальная, 2) соединительная.
А) транспорт веществ в организме
Б) плотное прилегание клеток друг к другу
В) обилие межклеточного вещества
Г) выделение ферментов и гормонов
Д) участие в образовании кожных покровов

Ответ


Установите соответствие между характеристикой ткани человека и ее типом: 1) эпителиальная, 2) соединительная, 3) нервная.
А) регуляция движений тела


Г) защита от химических воздействий
Д) выделение пота

Ответ


Установите соответствие между функциями тканей и их типом: 1) эпителиальная, 2) соединительная, 3) нервная.
А) регуляция процессов жизнедеятельности
Б) отложение питательных веществ в запас
В) передвижение веществ в организме
Г) защита от механических повреждений
Д) обеспечение обмена веществ между организмом и средой

Ответ


Установите соответствие между особенностью и видом мышечной ткани человека, для которого она характерна: 1) гладкая, 2) сердечная
А) образована веретеновидными клетками
Б) клетки имеют поперечную исчерченность
В) клетки одноядерные
Г) мышцы имеют высокую скорость сокращения

Ответ


Установите соответствие между свойствами и тканями человека: 1) Мышечная, 2) Нервная. Запишите цифры 1 и 2 в правильном порядке.
А) проводит электрический импульс
Б) клетки способны к сокращению
В) бывает гладкой и поперечно-полосатой
Г) в клетках может быть несколько ядер
Д) в клетках строго одно ядро
Е) большинство клеток имеет множество отростков

Ответ


Установите соответствие между особенностями ткани человека и её видом: 1) Эпителиальная, 2) Соединительная. Запишите цифры 1 и 2 в правильном порядке.
А) клетки плотно прилегают друг к другу
Б) клетки могут быть плоскими, кубическими, цилиндрическими
В) ткань бывает реснитчатой, железистой, ороговевающей
Г) ткань имеет мезодермальное происхождение
Д) ткань бывает жидкой и твёрдой
Е) межклеточное вещество хорошо развито

Ответ


Установите соответствие между видами тканей и их особенностями: 1) мышечная, 2) нервная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) обладает возбудимостью и проводимостью
Б) представлена миоцитами
В) способна сокращаться
Г) представлена нейронами
Д) обеспечивает связь органов и их согласованную работу
Е) обеспечивает движение тела и работу внутренних органов

Ответ


Установите соответствие между функцией ткани в организме человека и ее типом: 1) эпителиальная, 2) соединительная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) передвижение веществ в организме
Б) продуцирование гормонов
В) продуцирование фагоцитов
Г) обмен веществ между организмом и внешней средой
Д) отложение питательных веществ в запас

Ответ


Установите соответствие между строением и функциями отростков нейрона и их названием: 1) дендрит, 2) аксон. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) обеспечивает проведение сигнала от тела нейрона
Б) обеспечивает проведение сигнала к телу нейрона
В) короткий и сильно ветвится
Г) длинный и не ветвится
Д) снаружи покрыт миелиновой оболочкой

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Эпителиальные ткани человека
1) выстилают изнутри полые органы
2) способны сокращаться
3) способны возбуждаться
4) содержат мало межклеточного вещества
5) клетки имеют миелиновую оболочку
6) образуют железы

Ответ


1. Установите соответствие между характеристикой мышечной ткани и ее видом: 1) поперечно-полосатая, 2) гладкая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) образует скелетные мышцы
Б) образует средний слой стенок вен и артерий
В) обеспечивает произвольные движения
Г) обеспечивает перистальтику кишечника
Д) соcтоит из клеток веретеновидной формы
Е) состоит из многоядерных клеток (волокон)

Ответ


2. Установите соответствие между характеристиками и видами мышечной ткани: 1) гладкая, 2) поперечнополосатая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) способна к быстрому мощному сокращению
Б) состоит из коротких веретеновидных клеток
В) клетка содержит большое количество ядер
Г) миофибриллы в клетке расположены неупорядоченно
Д) входит в состав стенок полых внутренних органов
Е) управляется соматической нервной системой

Ответ


3. Установите соответствие между характеристиками тканей человека и их видами: 1) гладкая, 2) поперечнополосатая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) представлена клетками веретеновидной формы
Б) образует мышцы опорно-двигательного аппарата
В) состоит из многоядерных удлиненных волокон
Г) сокращение белковых волокон медленное
Д) образует средний слой стенки кровеносных сосудов

Ответ



Перечисленные ниже признаки, кроме двух, используются для описания строения и функций изображенных клеток. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) являются эукариотическими
2) содержат клеточные стенки
3) образуют эпителиальную ткань
4) соматические клетки гаплоидны
5) способны к митозу

Ответ


Установите соответствие между особенностью строения и функционирования поперечнополосатых мышц и их видом: 1) скелетная, 2) сердечная
А) прикрепляется к костям
Б) состоит из длинных волокон, не соединяющихся друг с другом
В) воспринимает импульсы по соматической рефлекторной дуге
Г) волокна плотно смыкаются в определенных участках
Д) работает автономно
Е) способна сокращаться во всех направлениях

Ответ


Установите соответствие между характеристиками и типами тканей: 1) поперечно-полосатая мышечная, 2) эпителиальная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) образует скелетную мускулатуру
Б) состоит из плотно прилегающих друг к другу клеток
В) обладает свойствами возбудимости и сократимости
Г) выстилает носовую полость
Д) выполняет защитную функцию
Е) обеспечивает движение тела

Ответ



Рассмотрите рисунок, определите (А) тип ткани, (Б) разновидность ткани и (В) укажите местоположение этой ткани в организме человека. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) соединительная
2) эпителиальная
3) поперечнополосатая мышечная
4) гладкая мышечная
5) реснитчатый эпителий
6) многослойный эпителий
7) слизистая оболочка полости носа
8) внутренняя поверхность желудка

Ответ



Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) защитная
2) лимфатические сосуды
3) альвеолярные пузырьки
4) гладкая мышечная
5) перистальтика кишечника
6) артерии, вены, капилляры
7) поперечнополосатая мышечная
8) соединительная

Ответ


Установите соответствие между характеристиками и типами тканей: 1) эпителиальная, 2) нервная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) большинство клеток имеет многочисленные отростки
Б) клетки объединяются и образуют слои
В) клетки способны проводить электрический импульс
Г) клетки могут иметь многочисленные ворсинки
Д) клетки обладают высокой способностью к регенерации
Е) зрелые клетки не способны к делению

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Каковы особенности костной ткани?
1) имеет плотное межклеточное вещество
2) содержит глиальные клетки
3) выполняет транспортную функцию
4) формируется из энтодермы
5) выполняет опорную функцию
6) состоит из пластинок

Ответ


Установите соответствие между характеристиками и видами соединительной ткани: 1) костная, 2) кровь. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) межклеточное вещество жидкой консистенции
Б) выполняет транспортную функцию
В) межклеточное вещество плотной консистенции
Г) осуществляет опорную функцию
Д) обеспечивает дыхательную функцию
Е) служит депо кальция в организме

Ответ



Установите соответствие между характеристиками и типами мышечной ткани, представленными на рисунках. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) образована многоядерными клетками, образующими длинные волокна
Б) способна генерировать и проводить электрический импульс
В) состоит из коротких веретеновидных клеток
Г) состоит из клеток с боковыми отростками, образующими контакты между собой
Д) управляется соматической нервной системой
Е) находится в стенках желудка и кишечника

Ответ


© Д.В.Поздняков, 2009-2019


Соединительная (или опорно-трофическая) ткань

Эта ткань объединяет все ткани внутренней среды организма и имеет крайне разнообразные формы. С одной стороны, к ним относятся собственно соединительная ткань, хрящ, кость, зубное вещество, имеющие в основном опорное значение, а с другой - так называемая ретикуло-эндотелиальная ткань, выполняющая в организме разнообразные функции; она участвует в построении очень многих органов, в частности костного мозга и лимфоидной ткани, являющихся главным источником образования клеточных элементов крови и лимфы.

Таким образом, соединительная ткань объединяет большое количество различных по форме тканей, которые заполняют промежутки между отдельными органами, составляют остов разных органов и всего организма (скелет), являясь опорой для других тканей, а также связывают их между собой; все вместе они составляют внутреннюю среду организма.

При развитии зародыша все виды соединительной ткани, как отдельные подвижные клетки, так и специальные скопления, образуются из одного очень рано отделяющегося от мезодермы зачатка, носящего название мезенхимы. Мезенхима обладает большой способностью к дифференцировке и еще в ранних стадиях развития зародыша распространяется но всему телу, заполняя пространства между зародышевыми листками и формирующимися органами. Принимая участие в формировании органов, мезенхима может подвергаться значительным превращениям. Образуя внутреннюю среду, она обеспечивает необходимые условия существования и развития всех других тканей и органов тела зародыша и, что особенно важно, осуществляет таким образом трофическую * функцию. Известно, например, что питательные вещества приносятся в ткани с кровью, а кровеносные сосуды проникают внутрь того или иного органа только по соединительной ткани. Стенки кровеносных и лимфатических сосудов выстланы особым видом соединительной ткани - эндотелием. Сама же кровь и лимфа есть также не что иное, как жидкая ткань, развивающаяся из мезенхимы, и поэтому кровь и лимфа являются разновидностями соединительной ткани. В соединительной ткани откладываются также запасы жира.

* (От греческого слова trophe - пища. )

Для обозначения всей группы тканей, производных от мезенхимы, обычно употребляют термин "соединительные ткани", но вернее будет назвать эту группу тканями внутренней среды. Эти рыхлые и волокнистые ткани пронизывают и подстилают структуры всех других тканей, являясь их опорными элементами. Через ткань внутренней среды осуществляется связь всех остальных структур и обеспечивается внутренний обмен веществ всех органов. Ткань внутренней среды нигде не соприкасается с внешней средой. Если при повреждениях ткань внутренней среды приходит в соприкосновение с наружной средой, организм стремится как можно скорее закрыть рану образованием струпа или путем зарастания эпителием. Ткани внутренней среды большей частью обладают сильно выраженной регенерационной способностью. Это видно хотя бы на примере заживления ран и срастания костных переломов. Клетки соединительной ткани сохраняют в течение всей жизни способность к энергичному размножению и последовательному дифференцированию. В случае гибели части какого-либо органа или ткани соединительнотканные элементы размножаются и замещают образовавшийся дефект.

В состав соединительной ткани, кроме клеток, всегда входит более или менее развитое межклеточное (промежуточное) вещество, что отличает ее от эпителиальной. Межклеточное вещество представляет продукт жизнедеятельности клеток соединительной ткани и большей частью определяет механические ее свойства. Для некоторых тканей внутренней среды (сухожилия, связки, хрящи, кости) характерна твердость, гибкость, сопротивление растяжению - все это зависит от строения и свойств межклеточного вещества.

Часть клеток внутренней среды (лейкоциты и др.) способна активно передвигаться, захватывать и поглощать проникающие в организм болезнетворные микроорганизмы, пылевые частицы и т. д. Отдельные участки соединительной ткани составляют барьер для микробов и их ядов, образуя так называемую ретикуло-эндотелиальную систему.

Таким образом, соединительная ткань имеет для организма исключительное значение. Она выполняет три главные функции трофическую (питательную), защитную и опорную.

Именно соединительную ткань акад. А. А. Богомолец избрал полем битвы со старостью. Он открыл, что это весьма важная физиологическая система. Нет ни одного органа, ни одного участка в организме человека, где бы не было соединительной ткани. Организм словно соткан из нее.

Первичной формой соединительной ткани являются мезенхимные клетки, которые очень скоро становятся оседлым и, связываются друг с другом перемычками и образуют широкопетлистую ткань. Строение мезенхимы очень простое: это вытянутые клетки с широкими соединяющимися отростками и крупным ядром, небогатым хроматином (рис. 18). Цитоплазма каких-либо специфических структур не имеет. Мезенхима начинает функционировать с самого момента своего возникновения, выполняя преимущественно трофическую функцию, т. е. передавая различные питательные вещества из одной части зародыша в другую.

Все формы ткани внутренней среды, образующиеся позднее, являются производными мезенхимы и отличаются одна от другой характером содержащихся в них клеток и свойствами массы межклеточного вещества.

Мезенхима образует: ретикулярную ткань кровотворных органов (см. ниже), которая по своим потенциям (способности к развитию) наиболее близка к ней; фиброцитарную сеть рыхлой соединительной ткани, выделяющую мощную межклеточную волокнистую субстанцию; эндотелиальные пласты, выстилающие сосуды сплошным клеточным слоем. Из мезенхимы образуются клетки таких опорных тканей, как сухожилия, кости и хрящи.

Непосредственным видоизменением мезенхимы являются также жировые и пигментные клетки со своими протоплазматическими включениями. Все эти клеточные формы характеризуются относительно постоянным расположением в межклеточном веществе и получили название оседлых клеток.

В соединительной ткани необходимо различать клетки, связанные между собой, и клетки свободные.

У высших позвоночных уже в ранних стадиях развития соединительная ткань дифференцируется в двух направлениях: с одной стороны, из нее образуется кровь, лимфа, система сосудов и рыхлая соединительная ткань, входящая в состав всех органов, с другой - возникают особо дифференцированные ткани в виде сухожилий, хрящей, костей, связок и т. д.

Различают следующие виды соединительной ткани:

1) рыхлая соединительная ткань;

2) ретикулярная ткань;

3) эндотелий;

4) кровь и лимфа;

5) плотная волокнистая соединительная ткань;

6) эластическая ткань;

7) хрящевая ткань;

8) костная ткань.

Рыхлая неоформленная соединительная ткань пронизывает все органы и раньше считалась несущественной прокладочной массой между частями разных органов. Она образует связи между кожей и мышцами, располагается между мышечными пучками, соединяет слизистую оболочку с мышечной оболочкой в кишечнике и других полостных органах. При вдувании воздуха рыхлая сочинительная ткань принимает ячеистый вид, поэтому ее еще называют просто клетчаткой.

Главную массу этой ткани составляют ясно заметные под микроскопом лентовидные пучки различной ширины, состоящие из отдельных тонких, нитевидных волоконец- фибрилл. Пучки тянутся в разных направлениях, пересекая друг друга в виде волнистых полосок (рис. 19). При варке в слабых растворах кислот или щелочей пучки разбухают и дают клейкую массу (глютин), поэтому фибриллы получили название коллагеновых * (клейдающих) волокон. Кроме того, в межклеточном веществе видны и другие более тонкие и прямые или ветвящиеся блестящие волокна - так называемые эластические волокна. В отношении слабых щелочей и кислот эти волокна устойчивы; они не разбухают при кипячении.

* (От греческого слова "колла" - клей. )

В промежуточном веществе рыхлой соединительной ткани лежат разных видов клетки. Одни из них принадлежат соединительной ткани, другие являются элементами крови - белыми кровяными тельцами, или лейкоцитами, проникшими сюда из кровеносного русла. Однако основные и постоянные клеточные элементы здесь - это клетки со многими отростками и ядром. Отростками эти клетки соединяются между собой и с волокнами межклеточного вещества. Протоплазма клетки довольно ясно делится на наружный слой - оболочку - и внутренний зернистый слой - цитоплазму. Эти клетки получили название фибробластов (фиброциты). Название указывает, что этим клеткам принадлежит роль образования волокон межклеточного вещества. В процессе развития ткани протоплазма молодого фибр облает а, этой "клеточки-ткача", выделяет на своей поверхности эктоплазму; в ней затем появляются волокна и она превращается в межклеточное вещество.

Вторым очень важным я постоянным клеточным элементом рыхлой соединительной ткани являются так называемые блуждающие клетки в покое, или гистиоциты. Эти клетки отличаются разнообразием формы и функции, а также своим происхождением. Они образуются из клеток самой соединительной ткани или являются клетками, выселившимися сюда из крови. Очертания клеток удлиненные, с большим количеством коротких отростков.

Гистиоциты обладают способностью поглощать из окружающей среды и накоплять различные посторонние вещества, попавшие в ткань. Так, например, при введении в организм некоторых красок или мельчайших взвесей туши гистиоциты захватывают их из тканевой жидкости. При некоторых условиях, например при раздражении соединительной ткани воспалительным процессом, гистиоциты могут превращаться в подвижные клетки, способные передвигаться. Активно передвигаясь и выпуская отростки своей протоплазмы, они захватывают и поглощают микробов. Подвижные гистиоциты носят название макрофагов, или фагоцитов (пожирателей).

Кроме обязательных клеточных элементов рыхлой соединительной ткани - фибробластов и гистиоцитов, встречаются и другие клетки: жировые, пигментные, тучные. Жировые клетки служат местом накопления запасного жира; они имеют вид пузырька (размером до 120 μ), наполненного жиром. В живом организме жир находится в полужидком состоянии; его капля занимает весь центр клетки, оттесняя протоплазму к периферии. Когда накопление жира происходит в большом количестве, соединительная ткань получает название жировой ткани; она образует большие жировые скопления (подкожножировой слой).

Жир, являясь запасным питательным веществом, одновременно защищает тело от механических повреждений, так как образует эластические жировые прослойки в подкожной клетчатке и между частями внутренних органов (рис. 20). Благодаря своей малой теплопроводности жир предохраняет организм от излишней потери тепла. Слой жировой ткани, располагающийся под собственно кожей, одевает сплошным покровом части нашего тела. На подошвах и на ладонях жир заключен в особых соединительнотканных ячейках и образует возвышения, которые вследствие этого обладают пружинящими, рессорными свойствами, защищая также подлежащие мышцы от сильного давления. Особенно много жира откладывается на ягодицах.

Во многих местах тела жир накапливается в оседлых клетках соединительной ткани. Как доказано путем экспериментов, жировая ткань путем потери внутриклеточного жира может превращаться также в ретикулярную ткань, что указывает на близость жировой ткани к ретикулярной.

При сильном истощении организма жир из отдельных жировых клеток исчезает.

Пигментные клетки у высших позвоночных и человека встречаются только в некоторых местах, например в коже сосков, мошонки, в радужной и сосудистой оболочках глаза. Протоплазма пигментных клеток содержит того или иного цвета пигмент в виде зернышек или глыбок. Тучные клетки по форме похожи на гистиоциты, но отличаются от них тем, что их протоплазма всегда содержит большое количество плотно сжатых округлых включений. Тучные клетки образуют большие скопления особенно в соединительной ткани кожи.

Наряду с перечисленными клетками в рыхлой соединительной ткани всегда встречаются белые кровяные тельца - лейкоциты, попадающие в ткань из капиллярных сосудов.

Ретикулярная, или сетчатая, ткань , как показывает само название, имеет сетчатое строение. Ее клетки, соединяясь между собой многочисленными протоплазматическими отростками, образуют сетку. Во всех частях соединительной ткани, где при нормальных условиях происходит интенсивное клеткообразование, ретикулярная ткань является основой. По сетчатому строению эта ткань близка к мезенхиме. Различие между ретикулярной тканью и мезенхимой заключается в строении межклеточного вещества: между клетками в ретикулярной сети находятся подвижная тканевая жидкость и разнообразные свободные клетки (блуждающие клетки, некоторые формы лейкоцитов и др.). Промежуточное же вещество между тяжами мезенхимных клеток свободных клеточных элементов не содержит.

В протоплазме отростков и между клетками ретикулярной ткани проходят ретикулиновые волокна, которые по своим свойствам несколько отличаются от волокон коллагеновых и эластических (рис. 21). Клетки ретикулярной ткани всегда очень бедны внутриклеточными структурами, в то время как в клетках рыхлой соединительной ткани они представлены в очень большом количестве.

При известных условиях клетки ретикулярной ткани, подобно гистиоцитам рыхлой ткани, могут превращаться в клетки, способные к передвижению. Например, при воспалительных процессах сеть, образованная соединяющимися отростками ретикулярных клеток, разрывается и освобожденные клетки перемещаются к месту воспаления, где поглощают (фагоцитируют) микробов и погибшие тканевые клетки. Так же, как и гистиоциты, клетки ретикулярной ткани обладают свойством поглощать из тканевой жидкости различные посторонние вещества - краски, взвеси и пр.

Ретикулярная ткань находится главным образом в кровотворных органах - костном мозгу, селезенке, лимфатических узлах, а также в печени и во многих слизистых оболочках, особенно пищеварительного канала; ретикулярная ткань имеется также и непосредственно вокруг кровеносных сосудов. Особый интерес представляют те участки ретикулярной ткани, по которым постоянно протекают большие количества жидкости. Так, например, ретикулярные клетки, выстилающие лимфатический синус в лимфатическом узле легко высвобождаются и попадают в межклеточные пространства, а оттуда в лимфатические и кровеносные пути, становясь гистиоцитами, моноцитами.

Ретикулярная ткань слизистых оболочек желудочно-кишечного тракта и дыхательных путей приспособлена к протекающим здесь процессам. Соединительная ткань состоит в значительной степени из образуемой оседлыми ретикулярными клетками и тонкими волокнами сети, которая тесно соприкасается с бесчисленными кровеносными капиллярами. Накопление в ретикулярной ткани раздражающих веществ, к которым относятся также многие пищевые вещества, обусловливает большую или меньшую степень насыщения ее свободными клетками. Во многих местах слизистой оболочки возникают значительные скопления лимфоцитов, содействующие образованию лимфатических узелков.

В костном мозгу из ретикулярной ткани образуются красные кровяные клетки - эритроциты и гранулоциты. В красном костном мозгу свободные клетки значительно многообразнее, чем в других видах ретикулярной ткани; большинство их представляет собой первые ступени развития кровяных клеток и гранулоцитов крови.

Эндотелиальная ткань . Эндотелиальная ткань, занимая особое место среди разновидностей соединительной ткани, по своим свойствам очень близка к ретикулярной ткани. По форме своих клеток она напоминает плоский однослойный эпителий (мезотелий), выстилающий замкнутые полости тела. Клетки эндотелия, соприкасаясь своими зазубренными краями, образуют сплошной пласт. Несмотря на большое внешнее сходство с мезотелием, эндотелий - не эпителиальная ткань; по своему происхождению он относится к соединительной ткани (рис. 22). Эндотелий выстилает все кровеносные и лимфатические сосуды, венозные синусы костного мозга, селезенки. Из клеток эндотелия построены стенки мельчайших кровеносных сосудов-капилляров. Эндотелием покрыты мозговые оболочки, полости суставов и сухожильных влагалищ. Клетки эндотелия в некоторых участках сосудистого русла обладают способностью очень быстро воспринимать и в больших количествах накоплять различные инородные вещества, вводимые в кровь (тушь, краски, бактерии и пр.), и, как и клетки ретикулярной ткани, при известных условиях могут превращаться в свободные подвижные клетки - фагоциты.

Ретикулярная ткань и эндотелий имеют очень много общего между собой. Их сходство заключается главным образом в одинаковых свойствах, благодаря которым они выполняют защитную функцию в организме. Способность к захватыванию и накоплению инородных веществ имеется у весьма разнообразных клеток соединительной ткани. Физиологическое значение этого чрезвычайно велико, ибо таким образом организм освобождается от случайно попавших в него посторонних и вредных веществ и микробов, а также от разного рода "шлаков", образующихся в процессе жизнедеятельности.

Совокупность всех этих элементов, выполняющих такую важную роль, как захватывание разнообразных вредных и отработанных веществ из внутренней среды организма и обезвреживание их, представляет собой весьма мощный защитный аппарат, получивший название ретикуло-эндотелиальной системы.

Ретикуло-эндотелиальная система играет в организме исключительно важную роль и не только как фагоцитирующий орган. Оказывается, что очень многие лекарства (как, например, сальварсан и др.) накопляются прежде всего в ретикуло-эндотелиальной системе. Известно, например, что хинин не действует на малярийных плазмодиев при непосредственном с ними соприкосновении вне организма; он неактивен или лишь слабо активен и в организме, если предварительно животному был введен в кровь какой-либо коллоид (например, колларгол или препараты железа), так как в этом случае ретикуло-эндотелиальная система оказывается блокированной, т. е. занятой поглощением введенных веществ, и ее функция оказывается временно выключенной. В сопротивляемости организма этот защитный орган играет огромную роль.

Например, известно, что при пересадке раковых опухолей (например, от человека или мышей крысам) они не развиваются и быстро рассасываются, но если перед пересадкой загрузить (блокировать) ретикуло-эндотелиальную систему животного каким-либо индиферентным веществом, опухоль развивается и растет; как только ретикуло-эндотелиальная система освободится от инородных веществ, опухоль уничтожается (Роскин).

Есть много оснований считать, что ретикуло-эндотелиальная система имеет большое значение для организма не только как защитный орган, фагоцитирующий и, по-видимому, вырабатывающий противотоксические вещества, но и как важнейший орган промежуточного обмена.

Кровь и лимфа . Кровь и лимфа в период зародышевого развития образуются одновременно с сосудами. В мезенхимном синцитии сначала появляются щели, которые превращаются затем в полости сосудов зародыша. Клетки же мезенхимы, оказавшиеся внутри этих полостей, превращаются в первичные элементы крови, а ограничивающий полости мезенхимный синцитий превращается во внутреннюю оболочку сосудов (эндотелий). Изолированные в сосудистых полостях мезенхимные клетки, дающие начало первичным элементам крови, называются гемоцитобластами. Проходя сложный путь развития, они преобразуются в зрелые кровяные клетки.

В дальнейшем уже у плода образование кровяных элементов происходит в печени, а у взрослого человека - в красном костном мозгу и в селезенке, т. е. не в полости сосудов, а в специальных кровотворных органах.

Кровь человека - густая темно-красная непрозрачная жидкость. Она состоит из клеточных элементов и промежуточного межклеточного вещества - плазмы. Плазма крови представляет собой вязкую белковую жидкость сложного состава. В ней содержатся белки - сывороточный альбумин и сывороточный глобулин и специфический белок фибриноген, обладающий высокой способностью свертываться. Кроме того, в протоплазме содержатся различные питательные вещества - белки, жиры и углеводы, ферменты, гормоны и минеральные соли. Плазма, лишенная при свертывании крови белка фибриногена, называется сывороткой.

Форменные элементы (рис. 23) крови состоят из эритроцитов (красные кровяные тельца), лейкоцитов (белые кровяные тельца) и тромбоцитов (кровяные пластинки).

Эритроциты у человека и млекопитающих представляют собой маленькие нежные тельца в форме двояковогнутого диска, лишенные ядра и неспособные к делению. Иногда в крови появляются и ядерные эритроциты, но это уже указывает на заболевание. Красный цвет эритроцитов зависит от того, что их протоплазма насыщена особым красным пигментом - гемоглобином, обладающим способностью легко поглощать и переносить кислород из легких в ткани.

Размер эритроцита около 7,5 μ в диаметре, а толщина в самом тонком месте не превышает 2 μ. Эритроциты обладают большой пластичностью: они могут сильно деформироваться и снова принимать прежнюю форму; например, эритроцит можно растянуть в 5-10 раз и он снова примет исходную форму.

В 1 мм 3 крови у взрослого здорового человека содержится около 5 млн. эритроцитов, а общее количество их доходит до 25 триллионов. Общая поверхность эритроцитов, через которую происходит присоединение и отдача кислорода, огромна - она в 1700 раз больше, чем поверхность кожного покрова человека.

Лейкоциты - это бесцветные, не имеющие постоянной формы тельца, состоящие из протоплазмы и ядра. Они обладают самостоятельным амебоидным движением. Величина их колеблется от 6 до 10 μ. В 1 мм 3 крови здорового человека содержится 6000-8000 лейкоцитов, т. е. примерно в 500 раз меньше, чем эритроцитов.

Лейкоциты по виду, величине и форме неодинаковы. Они имеют различия и в строении протоплазмы и ядер. Лейкоциты изучаются посредством окрашивания мазков крови. В зависимости от способности лейкоцитов воспринимать краски, от формы и величины ядра и пр. их разделяют на несколько видов: нейтрофильные, базофильные, эозинофильные, лимфоциты, моноциты.

Процентное соотношение количества различных форм лейкоцитов в крови всегда постоянно и колеблется в очень незначительных пределах, резкие отклонения наблюдаются только при болезнях. Лейкоциты по сравнению с эритроцитами имеют меньший удельный вес и еще большую эластичность, поэтому очень легко передвигаются.

Основная роль лейкоцитов в организме защитная: они фагоцитируют микробов, отмершие клетки тканей, посторонние и ненужные для организма частицы, а также, по-видимому, участвуют в выработке антител крови для иммунобиологической защиты организма.

Кровяные пластинки, или тромбоциты, представляют собой очень мелкие (2-3 μ) образования, имеющие веретенообразную или неправильную форму, содержащие в своей протоплазме мелкие зернышки. В 1 мм 3 крови насчитывается около 400000 кровяных пластинок. Они принимают непосредственное участие в процессе свертывания крови.

Кровь имеет исключительно большое значение для организма. Она беспрерывно циркулирует в кровеносных сосудах, доставляя органам и тканям питательные вещества и кислород и унося к органам выделения все ненужные и отработанные продукты обмена веществ.

Лимфа, медленно циркулирующая по лимфатическим сосудам, по своему составу близка к плазме крови. Из клеточных элементов в ней находятся преимущественно лимфоциты.

Кровь и лимфа беспрерывно обновляются, так как их клеточный состав, пройдя определенный цикл развития, отмирает. Эритроциты, например, живут около 130 дней, и вся кровь трижды за год полностью замещается новыми клетками, а белые кровяные тельца живут всего лишь несколько дней.

В течение всей жизни человека красный костный мозг непрерывно изо дня в день поставляет новые кровяные клетки. Он ежедневно посылает в кровяное русло более 300 млрд. эритроцитов. Каждую секунду появляется около 10 млн. "новорожденных" эритроцитов.

Местом образования лейкоцитов также частично является красный костный мозг, а главным образом лимфатические узлы и селезенка.

Плотная волокнистая (оформленная) соединительная ткань находится всегда в тех частях организма, где имеет место повышенная механическая нагрузка. В зависимости от вида раздражения и плотность ткани принимает различный характер. В плотной ткани межклеточное вещество значительно преобладает над клетками. В промежуточном веществе главное место занимают пучки коллагеновых и эластических волокон, переплетающихся в различных направлениях. Волокна в них расположены и переплетаются в определенном порядке, образуя довольно правильную густую, плотную решетку. Среди многочисленных, тесно прилежащих друг к другу волокон расположены немногочисленные фиброциты и в совсем незначительном количестве - гистиоциты (рис. 24а и 24б).

Плотная волокнистая ткань обладает большой прочностью. Примером может служить соединительная ткань кожи; во многих местах кожи человека (ладони, подошвы) заложены плотные соединительнотканные пласты, хорошо сопротивляющиеся давлению. Коллагеновые пучки здесь достигают весьма значительной толщины и в своей массе преобладают над эластическими. В других же местах кожи, где требуется растяжимость и смещение кожи (например, над суставами), преобладают эластические волокна.

Если воздействие на соединительную ткань имеется преимущественно в одном направлении, то образуется волокнистая ткань с параллельно идущими пучками, а фиброциты превращаются в удлиненные клетки с вытянутыми по длине ядрами. Из такой ткани состоят связки. Сильное развитие коллагеновых фибриллярных пучков придает связкам высокую способность противодействовать растяжению и разрыву.

В плотной соединительной ткани наряду с коллагеновыми волокнами могут быть иногда весьма сильно развиты эластические волокна. Такие связки при одностороннем натяжении значительно растягиваются, а после прекращения натяжения возвращаются к исходной длине. Это - эластические связки. Плотная волокнистая ткань встречается во многих органах; из плотной волокнистой ткани образован, например, соединительнотканный слой кожи - дерма, обусловливающий ее прочность и эластичность.

Сухожилия мышц также построены из плотной волокнистой ткани с продольно идущими коллагеновыми волокнами. Волокна склеены в пучки особым склеивающим веществом и одеты небольшим количеством рыхлой соединительной ткани, которая содержит необходимые для жизнедеятельности ткани кровеносные сосуды. Из клеточных элементов в сухожилиях имеются фиброциты, которые здесь называются сухожильными клетками.

Эластическая ткань по своему строению является плотной соединительной тканью, но в ней преобладают эластические волокна, которые являются главным элементом структуры ткани. Эластические волокна также расположены параллельно и окружены рыхлой соединительной тканью, связывающей их в одно целое. Клетки представляют собой обычный тип фиброцитов, изредка попадаются гистиоциты. Из эластической ткани состоят некоторые связки скелета, так называемые желтые связки позвоночника, выйная связка затылочной области.

Хрящевая ткань входит в состав некоторых частей скелета. Она неодинакова по своему строению. Основную массу ее ткани составляет межклеточное вещество; в зависимости от его характера различают гиалиновый, эластический и волокнистый хрящ.

Клетки хрящевой ткани лежат поодиночке или небольшими группами, по форме они разнообразны, но большей частью округлы. Небольшой слой межклеточного вещества, непосредственно окружающего клетку, кажется более светлым ободком, и его принято считать хрящевой капсулой. Круглое ядро клетки имеет неплотное строение. В протоплазме его имеются гликоген, жир и другие включения.

Все виды хряща обладают твердостью, будучи, однако, эластичными. Они легко режутся. Гиалиновый хрящ лучше всего противостоит давлению, но он не так гибок, тогда как эластический хрящ исключительно гибок и после прекращения сгибания снова принимает исходную форму.

Несмотря на то, что клетки хрящевой ткани отделены друг от друга относительно большой массой межклеточного вещества и изолированы, они являются основным фактором жизнедеятельности и роста хряща. Полностью окруженные межклеточным веществом, они делятся и образуют вокруг себя новое межклеточное вещество. Наибольшим ростом и способностью к размножению обладают клетки, находящиеся в более поверхностном слое хряща - так называемой надхрящнице, состоящей из волокнистой соединительной ткани. Клетки надхрящницы, прилежащие к уже образовавшемуся хрящу, постепенно выделяют межклеточное вещество, замуровываются в нем и таким образом образуют новый слой хряща. За счет надхрящницы совершается регенерация (восстановление) поврежденного хряща.

Питание хряща происходит из кровеносных сосудов надхрящницы, однако в толщу самого хряща сосуды не проходят; питательные вещества проникают через стенки сосудов и медленно диффузным путем, преодолевая большое сопротивление, достигают клеток, лежащих в глубине хряща. Таким образом, глубокие части хряща находятся в менее выгодных условиях питания, чем поверхностные. Клетки в центре хряща от недостатка питания с возрастом дегенерируют и погибают. Этим нарушается обмен в центре хряща, что вызывает отложение в промежуточном веществе известковых солей.

У человека и высших позвоночных наиболее распространенной формой хрящевой ткани является гиалиновый хрящ, который имеет слегка голубоватую окраску и напоминает матовое стекло (рис. 25). Без предварительной обработки вещество хряща кажется совершенно однородным, но при известной обработке (под влиянием трипсина, баритовой воды) межклеточное вещество гиалинового хряща распадается на отдельные волоконца, по своей природе сходные с коллагеновыми волокнами. Вещество этих волоконец называется хондрином. При варке хрящ дает клей. Хрящ в целом обладает большой прочностью и упругостью, благодаря чему он и несет опорную функцию в организме.

Из гиалинового хряща у человека состоят хрящи гортани и дыхательного горла, грудинные концы ребер. Этим хрящом покрыты соприкасающиеся поверхности костей в суставах; благодаря его механическим свойствам в суставах амортизируются толчки, происходящие при движениях, и уменьшается трение скользящих поверхностей. У низших животных, например у акул, осетровых рыб и некоторых земноводных, скелет построен полностью из гиалинового хряща. У зародыша человека скелет также почти полностью хрящевой, хотя первые ядра окостенения появляются уже в утробном периоде; постепенная замена хряща костью идет на протяжении всего детского и юношеского возраста, вплоть до 22-25 лет.

Эластический хрящ обладает слегка желтоватой окраской и отличается от гиалинового тем, что его межклеточное вещество состоит преимущественно из эластических волокон различной толщины и густоты расположения. Из эластического хряща состоят ушные раковины, надгортанник, хрящевые пластинки крыльев носа.

Волокнистый хрящ характеризуется большим количеством коллагеновых волокон в межклеточном веществе. Хрящевые клетки здесь весьма немногочисленны и большей частью соединены в небольшие группы, покрытые плотными капсулами. У человека волокнистый хрящ встречается в хрящевой прокладке между позвонками и в некоторых суставах.

Костная ткань по своему строению является наиболее сложной из всех форм соединительной ткани. Образование костного вещества происходит из таких же мезенхимных клеточных тяжей, как и всей соединительной ткани. Клетки, возникающие из мезенхимы и дающие в дальнейшем костное вещество, называются остеобластами; они отличаются богатством протоплазмы и крупным размером ядра.

Главную роль в костной ткани также играет межклеточное вещество. Костеобразование отличается от возникновения простой соединительной ткани тем, что фибриллы здесь рано и прочно как бы сливаются между собой путем превращения межфибриллярного вещества в цементирующий субстрат. Межклеточное вещество костной ткани пропитывается минеральными солями (главным образом солями кальция), благодаря чему кость приобретает свойственную ей твердость и прочность, отличающую ее от всех других тканей организма.

Основное вещество кости содержит многочисленные мелкие (до 15-27 μ) овально-продолговатые пустоты, которые соединены между собой посредством большого количества разветвленных костных канальцев. Таким образом, все межклеточное вещество кости пронизано системой сквозных тонких канальцев. Стенки костных полостей особенно прочны. В каждой такой маленькой полости помещается костная клетка - остеоцит, которая посылает в костные канальцы тонкие отростки, соединяющиеся с отростками соседних клеток. В протоплазме остеоцитов имеются довольно крупные ядра. Если кость вываривать или высушить, то клетки погибнут и в межклеточном веществе будут видны указанные выше пустоты такой же формы, как и клетки. Эти полости с канальцами запоминают паучков; их раньше неправильно называли костными тельцами (рис. 26). Остеоциты являются высоко дифференцированными элементами, поэтому к размножению они неспособны.

Совокупность фибрилл промежуточного вещества костной ткани образует тончайшие пластинки, расположенные в определенном порядке, составляя губчатое, или компактное, вещество кости. Под микроскопом обнаруживается, что пластинки тесно налегают друг на друга и расположены концентрическими кругами вокруг каналов, идущих вдоль кости и сообщающихся с костными канальцами. Эти длинные каналы, имеющие в диаметре от 20 до 110 μ, получили название гаверсовых каналов; местами они ветвятся и образуют широкопетлистую сеть, в них обычно проходят кровеносные сосуды. На поперечных срезах ясно видна система костных пластинок, расположенных в форме колец в количестве от 8 до 15 вокруг гаверсова канала (рис. 27 и 28).


Наружный и внутренний слои трубчатых костей состоят из концентрически расположенных слоев пластинок. Между отдельными пластинками костного вещества, окружающими гаверсовы каналы, располагаются промежуточные, так называемые вставочные пластинки; они располагаются больше там, где пластинки, окружающие соседние гаверсовы каналы, прилегают неплотно одна к другой.

Питание костной ткани, по-видимому, лучше, чем хрящевой. В более тонких слоях кости жидкости, необходимые для жизнедеятельности клеток, легко проходят через систему тонких костных канальцев, в более же толстых массах костного вещества, кроме гаверсовых каналов, повсюду имеются еще более крупные каналы, в которых проходят кровеносные сосуды, питающие кость. Сосуды входят с поверхности кости через специальные питательные отверстия (foramina nutritia), продолжающиеся в так называемые фолькмановские каналы, которые проходят в веществе кости вначале перпендикулярно к ее поверхности, а потом поворачивают, направляются по оси кости и, распадаясь на множество более мелких трубочек, переходят в гаверсовы каналы.

Снаружи кость покрыта особой соединительнотканной волокнистой оболочкой. Этот слой соединительной ткани, прилегающий к наружной поверхности кости, называется периостом, или надкостницей (подобно надхрящнице). Через него кость также снабжается нервами и сосудами. Толщина этого слоя колеблется. Непосредственно прилегающий к кости слой периоста получил название камбиального (росткового); он богат не вполне дифференцированными клетками, способными к размножению; при этом непосредственно к костной ткани прилегают расположенные однослойно остеобласты (образователи нового костного вещества). За счет камбиального слоя периоста постепенно образуются тончайшие костные пластинки, и молодая кость растет в толщину. При разрушении костного вещества восстановление ее происходит за счет надкостницы. Заболевание же или разрушение периоста ведет за собой неминуемую гибель кости.

Снаружи к камбиальному слою примыкает слой фиброзной соединительной ткани с коллагеновыми пучками и эластическими сетями. В этом слое проходит много сухожильных пучков, прикрепляющихся к кости мышц; часть коллагеновых и эластических волокон проникает в кость. Количество этих волокон определяет прочность прикрепления периоста к костному веществу. В тех местах, где прикрепляются сухожилия, количество волокон, проникающих в кость, так велико, что периост невозможно отделить. Внешний слой периоста осуществляет связь с окружающими тканями, он очень богат сосудами и нервами.

Кровеносные сосуды кости, костного мозга и периоста связаны друг с другом и с сосудами тканей, окружающих кость. Из многочисленных сосудов периоста ответвляются мелкие веточки (капилляры), идущие в каналы костного вещества и соединяющиеся внутри с богатой сетью сосудов костного мозга. Лимфатические сосуды находятся только в поверхностном слое периоста. Многочисленные нервы частью оканчиваются в периосте, частью же входят в гаверсовы каналы и проникают до костного мозга.

Благодаря сравнительно хорошей проницаемости костной ткани для питательных жидкостей кость, несмотря на свою твердость, относится к числу тканей, наиболее способных даже во взрослом организме при помощи соответствующей перестройки приспосабливаться к изменяющимся условиям. Эта способность играет важную роль при заживлении костных повреждений.

Костная ткань развивается из соединительной и хрящевой. Она появляется у человеческого зародыша в начале третьего месяца утробной жизни. К этому времени зародыш уже имеет скелет, развившийся из клеток мезенхимы. Этот первичный скелет зародыша состоит из хрящевой и соединительной ткани. В дальнейшем костная ткань образуется или на месте соединительной ткани, или на месте хряща. Соединительнотканные клетки приобретают отростчатую форму, а промежуточное вещество пропитывается солями извести и образует описанную выше систему концентрических костных пластинок. Этот процесс идет при участии уже известных нам клеток остеобластов, которые усиленно размножаются, скопляются островками и, выделяя промежуточное вещество, замуровываются в нем, превращаясь в костные клетки. Таким путем образуется костная ткань на месте соединительной.

При развитии же костной ткани из хряща последний предварительно рассасывается и одновременно постепенно замещается соединительной тканью, которая затем благодаря деятельности тех же остеобластов превращается в костную. В участках хряща, удаленных от пунктов обызвествления, рост будущей кости продолжается, в местах обызвествления рост прекращается. Будущая костномозговая полость в местах обызвествления возникает таким образом, что на границе хряща и обызвествленного участка появляется ткань, богатая молодыми клетками и кровеносными сосудами, которая проникает в хрящ и разрушает обызвествленное хрящевое вещество. По мере роста и обызвествления кости мозговая полость постепенно увеличивается и наполняется кровеносными сосудами и первичным костным мозгом, состоящим из мезенхимных клеток, количество которых начинает сильно возрастать. Они представляют собой первые ступени развития кровяных клеток. Эти клетки и составляют основную массу костного мозга. Таким образом, из хрящевых структур путем растворения и замены их костной тканью, а также путем отложения новых костных масс снаружи из камбиального слоя надкостницы возникает кость как орган.

У зародыша такие части скелета, как позвоночный столб, основание черепа и конечности, являются хрящевыми, они представляют собой как бы хрящевые модели будущих костей. Кости же лица и крыши черепа у зародыша состоят из соединительной ткани, костная ткань развивается на месте ее.

Кости являются сравнительно поздним образованием. В ранний период зародышевого развития, когда мышцы, нервы, сосуды, мозг и пр. уже хорошо сформированы, костной ткани еще нет и следа. В этих стадиях развития скелет состоит из зародышевой соединительной ткани и хряща. У новорожденного скелет во многих местах состоит еще из хрящевой ткани. Хрящ и соединительная ткань не исчезают целиком даже и во вполне развитой кости. Хрящ долго остается в составе костей, выполняя промежуток между серединой и концами костей - эпифизарный хрящ; за счет последнего кость продолжает свой рост в длину. С окончанием роста кости хрящевые прослойки исчезают, т. е. замещаются костным веществом. Однако на всю жизнь остается слой хряща, покрывающий суставные концы костей, придавая им необходимую гладкость для беспрепятственного движения в суставах.

Промежуточное вещество молодой кости пропитывается солями извести постепенно и не везде одинаково. Так, окостенение концов длинных костей начинается значительно позже, чем окостенение средней части кости. Например, в середине плечевой кости окостенение начинается у восьминедельного зародыша, а на концах ее - лишь в первые годы жизни. Окостенение середины ключицы заметно уже на шестой неделе зародышевой жизни, а на концах ее появляется только к 18-му году жизни. Участки, уже пропитавшиеся солями кальция (окостеневшие), носят название точек, или ядер, окостенения. Кровеносные сосуды активно врастают в обызвествленный хрящ в тот период, когда он превращается в кость.

Рассмотрев все разнообразие клеточных форм внутренней среды организма, мы можем разделить их на две большие группы. Часть клеток являются окончательно дифференцированными, достигшими конечной формы развития; они не могут больше размножаться и после более или менее длительного функционального периода гибнут (эритроциты, гранулоциты, тромбоциты, остеоциты и некоторые другие). Другую группу составляют клетки, содержащие живую массу в таком состоянии, что они значительно ближе подходят к недифференцированной мезенхиме и способны к интенсивному размножению (оседлые клетки, блуждающие клетки в покое и различные круглые базофильные клетки). Известны многие случаи, когда один вид клеток из этой последней группы может превращаться в другой, поэтому клетки второй группы являются исходными формами для развития клеточных видов первой группы. При этом надо всегда иметь в виду, что исходной формой всех тканей внутренней среды является мезенхима с ее основными свойствами: неограниченной способностью к размножению и способностью давать начало развитию любых клеточных форм внутренней среды.